【题目】对于给定的两点,若存在点,使得三角形的面积等于1,则称点为线段的“单位面积点”. 已知在平面直角坐标系中,为坐标原点,点. 若将线段沿轴正方向平移个单位长度,使得线段上存在线段的“单位面积点”,则的取值范围是_____.
【答案】或
【解析】
设线段AB上存在线段OP的“单位面积点”是Q,分两种进行讨论情况:①线段OP在AB的下方;②线段OP在AB的上方.
解:设线段AB上存在线段OP的“单位面积点”是Q,分两种情况:
①线段OP在AB的下方时,,
∵OP=1,S△OPQ=1,
∴Q到OP的距离为 ,
而OA=2,BP=3,
∴可将线段OP沿y轴正方向平移t≤3-2=1个单位长度,
又t>0,
∴0<t≤1;
②线段OP在AB的上方时,,
∵OP=1,S△OPQ=1,
∴Q到OP的距离为,
而A(0,2),B(1,3),
∴可将线段OP沿y轴正方向平移2+2≤t≤3+2,即4≤t≤5个单位长度,
综上,t的取值范围是0<t≤1或4≤t≤5.
故答案为0<t≤1或4≤t≤5.
科目:初中数学 来源: 题型:
【题目】已知某矩形的面积为20cm 2.
(1)写出其长 y与宽 x之间的函数表达式.
(2)当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,求其长为多少?
(3)如果要求矩形的长不小于8cm,其宽至多要多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,CB是弦,OD⊥CB于E,交劣弧CB于D,连接AC.
(1)请写出两个不同的正确结论;
(2)若CB=8,ED=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 已知,反比例函数y=的图象和一次函数的图象交于A、B两点,点A的横坐标是-1,点B的纵坐标是-1.
(1)求这个一次函数的表达式;
(2)若点P(m,n)在反比例函数图象上,且点P关于x轴对称的点Q恰好落在一次函数的图象上,求m2+n2的值;
(3)若M(x1,y1),N(x2,y2)是反比例函数在第一象限图象上的两点,满足x2-x1=2,y1+y2=3,求△MON的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图A在数轴上对应的数为-2.
(1)点B在点A右边距离A点4个单位长度,则点B所对应的数是_____.
(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒3个单位长度沿数轴向右运动.现两点同时运动,当点A运动到-6的点处时,求A、B两点间的距离.
(3)在(2)的条件下,现A点静止不动,B点以原速沿数轴向左运动,经过多长时间A、B两点相距4个单位长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在航线的两侧分别有观测点A和B,点A到航线的距离为2km,点B位于点A北偏东60°方向且与A相距10km处.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5min后该轮船行至点A的正北方向的D处.
(1)求观测点B到航线的距离;
(2)求该轮船航行的速度(结果精确到0.1km/h).(参考数据: 1.73,sin76°≈0.97,cos≈0.24,tan76°≈0.4.01)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为( )
A. 36° B. 45° C. 60° D. 72°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.
(1)求证:四边形ADBE是矩形;
(2)求矩形ADBE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数y=的图象与一次函数y=kx+m的图象相交于点A(2,1).
(1)分别求出这两个函数的解析式;
(2)当x取什么范围时,反比例函数值大于0;
(3)若一次函数与反比例函数另一交点为B,且纵坐标为﹣4,当x取什么范围时,反比例函数值大于一次函数的值;
(4)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com