精英家教网 > 初中数学 > 题目详情

如图,抛物线y=数学公式x2+bx+c与y轴交于点C(0,-4),与x轴交于点A,B,且B点的坐标为(2,0)
(1)求该抛物线的解析式.
(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.
(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.

解:(1)把点C(0,-4),B(2,0)分别代入y=x2+bx+c中,

解得
∴该抛物线的解析式为y=x2+x-4.

(2)令y=0,即x2+x-4=0,解得x1=-4,x2=2,
∴A(-4,0),S△ABC=AB•OC=12.
设P点坐标为(x,0),则PB=2-x.
∵PE∥AC,
∴∠BPE=∠BAC,∠BEP=∠BCA,
∴△PBE∽△ABC,
,即
化简得:S△PBE=(2-x)2
S△PCE=S△PCB-S△PBE=PB•OC-S△PBE=×(2-x)×4-(2-x)2
=x2-x+
=(x+1)2+3
∴当x=-1时,S△PCE的最大值为3.

(3)△OMD为等腰三角形,可能有三种情形:
(I)当DM=DO时,如答图①所示.
DO=DM=DA=2,
∴∠OAC=∠AMD=45°,
∴∠ADM=90°,
∴M点的坐标为(-2,-2);
(II)当MD=MO时,如答图②所示.
过点M作MN⊥OD于点N,则点N为OD的中点,
∴DN=ON=1,AN=AD+DN=3,
又△AMN为等腰直角三角形,∴MN=AN=3,
∴M点的坐标为(-1,-3);
(III)当OD=OM时,
∵△OAC为等腰直角三角形,
∴点O到AC的距离为×4=,即AC上的点与点O之间的最小距离为
>2,∴OD=OM的情况不存在.
综上所述,点M的坐标为(-2,-2)或(-1,-3).
分析:(1)利用待定系数法求出抛物线的解析式;
(2)首先求出△PCE面积的表达式,然后利用二次函数的性质求出其最大值;
(3)△OMD为等腰三角形,可能有三种情形,需要分类讨论.
点评:本题是二次函数综合题,考查了二次函数的图象与性质、待定系数法、相似三角形、等腰三角形等知识点,以及分类讨论的数学思想.第(2)问将面积的最值转化为二次函数的极值问题,注意其中求面积表达式的方法;第(3)问重在考查分类讨论的数学思想,注意三种可能的情形需要一一分析,不能遗漏.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=x2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,AO.
(1)求点A的坐标;
(2)以点A、B、O、P为顶点构造直角梯形,请求一个满足条件的顶点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,抛物线y=-x2+2x+m(m<0)与x轴相交于点A(x1,0)、B(x2,0),点A在点B的左侧.当x=x2-2时,y
0(填“>”“=”或“<”号).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,抛物线y=x2+(k2+1)x+k+1的对称轴是直线x=-1,且顶点在x轴上方.设M是直线x=-1左侧抛物线上的一动点,过点M作x轴的垂线MG,垂足为G,过点M作直线x=-1的垂线MN,垂足为N,直线x=-1与x轴的交于H点,若M点的横坐标为x,矩形MNHG的周长为l.
(1)求出k的值;
(2)写出l关于x的函数解析式;
(3)是否存在点M,使矩形MNHG的周长最小?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•扬州)如图,抛物线y=x2-2x-8交y轴于点A,交x轴正半轴于点B.
(1)求直线AB对应的函数关系式;
(2)有一宽度为1的直尺平行于y轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=x2-2x-3与x轴分别交于A,B两点.
(1)求A,B两点的坐标;
(2)求抛物线顶点M关于x轴对称的点M′的坐标,并判断四边形AMBM′是何特殊平行四边形.(不要求说明理由)

查看答案和解析>>

同步练习册答案