精英家教网 > 初中数学 > 题目详情
9.如图①,现有一张三角形ABC纸片,沿BC边上的高AE所在的直线翻折,使得点C与BC边上的点D重合.
(1)填空:△ADC是等腰三角形;
(2)若AB=15,AC=13,BC=14,求BC边上的高AE的长;
(3)如图②,若∠DAC=90°,试猜想:BC、BD、AE之间的数量关系,并加以证明.

分析 (1)根据折叠得到AD=AC,所以△ADC是等腰三角形;
(2)设CE=x,利用勾股定理得到方程132-x2=152-(14-x)2解得:x=5,在Rt△AEC中,由勾股定理即可解答;
(3)猜想BC、BD、AE之间的数量关系为:BC-BD=2AE.由△ADC是等腰三角形,又∠DAC=90°,得到△ADC是等腰直角三角形又AE是CD边上的高,所以△AED与△AEC都是等腰直角三角形,即可得到CD=2AE.由BC-BD=CD,即可解答.

解答 解:(1)∵三角形ABC纸片,沿BC边上的高AE所在的直线翻折,使得点C与BC边上的点D重合.
∴AD=AC,
∴△ADC是等腰三角形;
故答案为:等腰.
(2)设CE=x,则BE=14-x,
在Rt△AEC中,由勾股定理得:AE2=AC2-CE2
∴AE2=132-x2
在Rt△ABE中,由勾股定理得:AE2=AB2-BE2
∴AE2=152-(14-x)2
∴132-x2=152-(14-x)2
解得:x=5,
在Rt△AEC中,由勾股定理得:$AE=\sqrt{A{C^2}-C{E^2}}=\sqrt{{{13}^2}-{5^2}}=\sqrt{144}=12$.
(3)猜想BC、BD、AE之间的数量关系为:BC-BD=2AE.
证明如下:
由(1)得:△ADC是等腰三角形,又∠DAC=90°,
∴△ADC是等腰直角三角形
又AE是CD边上的高,
∴DE=CE,$∠DAE=∠EAC=\frac{1}{2}∠DAC=\frac{1}{2}×90°=45°$,
∴△AED与△AEC都是等腰直角三角形,
∴DE=AE=EC,即CD=2AE.
∵BC-BD=CD
∴BC-BD=2AE.

点评 本题考查了等腰三角形的性质定理与判定定理、等腰直角三角形的性质、勾股定理,解决本题的根据是判定△ADC是等腰三角形和勾股定理的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.在我校的“五水共治”献爱心捐款活动中,金老师随机了解到10名学生的捐款金额如下(单位:元):10,8,12,15,10,12,11,9,13,10.
(1)则这组数据的中位数是10.5元,众数是10元.
(2)已知我校有学生近3千人(按3千人计),求这次我校学生捐款的总金额.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,
劳动时间(小时)3456
人数1121
以下说法正确的是(  )
A.中位数是5,平均数是3.6B.众数是5,平均数是4.6
C.中位数是4,平均数是3.6D.众数是2,平均数是4.6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列四个算式:①a6•a6=a6;②m3+m2=m5;③x2•x•x8=x10;④y2+y2=y4.其中计算正确的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图正方形ABCD的边长为2,点E、F、G、H分别在AD、AB、BC、CD上的点,且AE=BF=CG=DH,分别将△AEF、△BFG、△CGH、△DHE沿EF、FG、GH、HE翻折,得四边形MNKP,设AE=x,S四边形MNKP=y,则y关于x的函数图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知,在菱形ABCD中,∠ADC=60°,点F为CD上任意一点(不与C、D重合),过点F作CD的垂线,交BD于点E,连接AE.
(1)①依题意补全图1;
②线段EF、CF、AE之间的等量关系是AE2=EF2+CF2
(2)在图1中将△DEF绕点D逆时针旋转,当点F、E、C在一条直线上(如图2).线段EF、CE、AE之间的等量关系是AE=CE+2EF.写出判断线段EF、CE、AE之间的等量关系的思路(可以不写出证明过程)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.
理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;
(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;
(3)如图3,点D、B分别在x轴和y轴上,且D(8,0),B(0,6),点A在BD 边上,且AB=2.试在x轴上找一点C,使ABOC是对等四边形,请直接写出所有满足条件的C点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算:
(1)$\frac{3}{m}+\frac{m-15}{5m}$.
(2)$\frac{{a}^{2}}{a+1}$-a+1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b-2c|,Q=|2a-b|-|3b+2c|,则P,Q的大小关系是P>Q.

查看答案和解析>>

同步练习册答案