【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(﹣3,0)和点B(2,0),直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F.
(1)求抛物线的解析式;
(2)连接AE,求h为何值时,△AEF的面积最大.
(3)已知一定点M(﹣2,0),问:是否存在这样的直线y=h,使△BDM是等腰三角形?若存在,请求出h的值和点D的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x2﹣x+6;(2)当h=3时,△AEF的面积最大,最大面积是 .(3)存在,当h=时,点D的坐标为(,);当h=时,点D的坐标为(,).
【解析】
(1)利用待定系数法即可解决问题.
(2)由题意可得点E的坐标为(0,h),点F的坐标为( ,h),根据S△AEF=OEFE=h=﹣(h﹣3)2+.利用二次函数的性质即可解决问题.
(3)存在.分两种情形情形,分别列出方程即可解决问题.
解:如图:
(1)∵抛物线y=ax2+bx+6经过点A(﹣3,0)和点B(2,0),
∴,
解得:.
∴抛物线的解析式为y=﹣x2﹣x+6.
(2)∵把x=0代入y=﹣x2﹣x+6,得y=6,
∴点C的坐标为(0,6),
设经过点A和点C的直线的解析式为y=mx+n,则,
解得 ,
∴经过点A和点C的直线的解析式为:y=2x+6,
∵点E在直线y=h上,
∴点E的坐标为(0,h),
∴OE=h,
∵点F在直线y=h上,
∴点F的纵坐标为h,
把y=h代入y=2x+6,得h=2x+6,
解得x=,
∴点F的坐标为( ,h),
∴EF=.
∴S△AEF=OEFE=h=﹣(h﹣3)2+,
∵﹣<0且0<h<6,
∴当h=3时,△AEF的面积最大,最大面积是 .
(3)存在符合题意的直线y=h.
∵B(2,0),C(0,6),
∴直线BC的解析式为y=﹣3x+6,设D(m,﹣3m+6).
①当BM=BD时,(m﹣2)2+(﹣3m+6)2=42,
解得m=或(舍弃),
∴D(,),此时h=.
②当MD=BM时,(m+2)2+(﹣3m+6)2=42,
解得m=或2(舍弃),
∴D(,),此时h=.
∵综上所述,存在这样的直线y=或y=,使△BDM是等腰三角形,当h=时,点D的坐标为(,);当h=时,点D的坐标为(,).
科目:初中数学 来源: 题型:
【题目】某校九年级学生某科目学期总评成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果学期总评成绩80分以上(含80分),则评定为“优秀”,下表是小张和小王两位同学的成绩记录:
完成作业 | 单元测试 | 期末考试 | |
小张 | 70 | 90 | 80 |
小王 | 60 | 75 | _______ |
若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定学期总评成绩.
(1)请计算小张的学期总评成绩为多少分?
(2)小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】手机下载一个APP,缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行…最近的网红非“共享单车”莫属.共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、大卸八块等毁坏单车的行为也层出不穷.某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.
(1)一月份该公司投入市场的自行车至少有多少辆?
(2)二月份的损坏率达到20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为引起了一场国民素质的大讨论,三月份的损坏率下降a%,三月底可使用的自行车达到7752辆,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图象与轴交于两点(点在点的左侧),与轴交于点,顶点为点.
(1)点的坐标为 ,点的坐标为 ;(用含有的代数式表示)
(2)连接.
①若平分,求二次函数的表达式;
②连接,若平分,求二次函数的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】[问题提出]
在判定两个三角形全等时,除根据一般三角形全等判定定理外,还有"" 方法.类似的,我们对直角三角形相似的条件进行探索。
(1) [提出猜想]
除根据一般三角形相似判定的条件外,请你提出类似于""的判定直角三角形相似的方法,并用文字描述为: .
(2) [初步思考]
其中,我们不妨将问题用符号语言表示为:如图1,在和中,,若 ,则, 请给予证明.
(3) [深入研究]
若图2中的,其他条件不变,两个三角形是否相似?试利用以上探究的结论解决问题,若相似请证明,若不相似,请画出反例.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.
(1)求抛物线C2的解析式;
(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;
(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.
请根据图中信息解决下列问题:
(1)共有多少名同学参与问卷调查;
(2)补全条形统计图和扇形统计图;
(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象分别交于点P,Q.
(1)求P点的坐标;
(2)若△POQ的面积为9,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在地面上竖直安装着AB、CD、EF三根立柱,在同一时刻同一光源下立柱AB、CD形成的影子为BG与DH.
(1)填空:判断此光源下形成的投影是: 投影.
(2)作出立柱EF在此光源下所形成的影子.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com