如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x秒,△PBQ的面积为y(cm2).
(1)求y关于x的函数关系式,并在右图中画出函数的图像;
(2)求△PBQ面积的最大值.
(1)y关于x的函数关系式为:y=-x2+9x(0<x≤4);函数的图像见解析;
(2)△PBQ的最大面积是20cm2.
解析试题分析:(1)借助三角形面积公式求出y关于x的函数关系式,画出函数的图像;
(2)先找到函数的顶点,再由函数单调性和自变量的取值范围求出最大面积。
试题解析:(1)∵S△PBQ= PB·BQ, PB=AB-AP=18-2x,BQ=x,
∴y=(18-2x)x,
即y=-x2+9x(0<x≤4);
函数图像如下图:
;
(2)由(1)得:y=-x2+9x=-(x-)2 +,
∴顶点坐标为(,)
∴当0<x≤时,y随x的增大而增大,
∵x的取值范围是0<x≤4,
∴当x=4时,y最大值=20,即△PBQ的最大面积是20cm2.
考点:动点问题.
科目:初中数学 来源: 题型:解答题
近期,海峡两岸关系的气氛大为改善.大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:
每千克售价(元) | 40 | 39 | 38 | 37 | … | 30 |
每天销量(千克) | 60 | 65 | 70 | 75 | … | 110 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
(1)已知二次函数,请你化成的形式,并在直角坐标系中画出的图象;
(2)如果,是(1)中图象上的两点,且,请直接写出、的大小关系;
(3)利用(1)中的图象表示出方程的根来,要求保留画图痕迹,说明结果.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
抛物线y=ax2+2x+c与其对称轴相交于点A(1,4),与x轴正半轴交于点B.
(1)求这条抛物线的函数关系式;
(2)在抛物线对称轴上确定一点C,使△ABC是等腰三角形,求出所有点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知二次函数y=x2-2x-3的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为D.
(1)求点A、B、C、D的坐标,并在下面直角坐标系中画出该二次函数的大致图象;
(2)说出抛物线y=x2-2x-3可由抛物线y=x2如何平移得到?
(3)求四边形OCDB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图是一座古拱桥的截面图.在水平面上取点为原点,以水平面为轴建立直角坐标系,桥洞上沿形状恰好是抛物线的图像.桥洞两侧壁上各有一盏距离水面4米高的景观灯.请求出这两盏景观灯间的水平距离.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,直线AB交x轴于点B,交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°,AD:AB=1:2.
(1)求点D的坐标;
(2)求经过O、D、B三点的抛物线的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上两点,经过A、C、B的抛物线的一部分与经过点A、D、B的抛物线的一部分组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线:的顶点.
(1)求A、B两点的坐标.
(2)“蛋线”在第四象限上是否存在一点P,使得的面积最大?若存在,求出面积的最大值;若不存在,请说明理由;
(3)当为直角三角形时,直接写出m的值.______
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
今年,在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.(售价不低于进价).请根据小丽提供的信息,解答小华和小明提出的问题.
认真阅读上面三位同学的对话,请根据小丽提供的信息.
(1)解答小华的问题;
(2)解答小明的问题.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com