精英家教网 > 初中数学 > 题目详情
(2012•定西)在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面之间坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)点C的坐标为
3
,3)
3
,3)

(2)若抛物线y=ax2+bx经过C,A两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,求出此时点P的坐标,若不存在,请说明理由.
分析:(1)在Rt△AOB中,根据AB的长和∠BOA的度数,可求得OA的长,根据折叠的性质即可得到OA=OC,且∠BOC=∠BOA=30°,过C作CD⊥x轴于D,即可根据∠COD的度数和OC的长求得CD、OD的值,从而求出点C的坐标.
(2)将A、C的坐标代入抛物线的解析式中,通过联立方程组即可求出待定系数的值,从而确定该抛物线的解析式.
(3)根据(2)所得抛物线的解析式可得到其顶点的坐标(即C点),设直线MP与x轴的交点为N,且PN=t,在Rt△OPN中,根据∠PON的度数,易得PN、ON的长,即可得到点P的坐标,然后根据点P的横坐标和抛物线的解析式可求得M点的纵坐标,过M作ME⊥CD(即抛物线对称轴)于E,过P作PQ⊥CD于Q,若四边形CDPM是等腰梯形,那么CE=QD,根据C、M、P、D四点纵坐标,易求得CE、QD的长,联立两式即可求出此时t的值,从而求得点P的坐标.
解答:解:(1)过点C作CH⊥x轴,垂足为H;
∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,
∴OB=4,OA=2
3

由折叠的性质知:∠COB=30°,OC=AO=2
3

∴∠COH=60°,OH=
3
,CH=3;
∴C点坐标为(
3
,3).


(2)∵抛物线y=ax2+bx(a≠0)经过C(
3
,3)、A(2
3
,0)两点,
3=3a+
3
b
0=12a+2
3
b

解得:
a=-1
b=2
3

∴此抛物线的函数关系式为:y=-x2+2
3
x.

(3)存在.
∵y=-x2+2
3
x的顶点坐标为(
3
,3),
即为点C,MP⊥x轴,垂足为N,设PN=t;
∵∠BOA=30°,
∴ON=
3
t,
∴P(
3
t,t);
作PQ⊥CD,垂足为Q,ME⊥CD,垂足为E;
把x=
3
t代入y=-x2+2
3
x,
得y=-3t2+6t,
∴M(
3
t,-3t2+6t),E(
3
,-3t2+6t),
同理:Q(
3
,t),D(
3
,1);
要使四边形CDPM为等腰梯形,只需CE=QD,
即3-(-3t2+6t)=t-1,
解得t=
4
3
,t=1(舍),
∴P点坐标为(
4
3
3
4
3
),
∴存在满足条件的P点,使得四边形CDPM为等腰梯形,此时P点坐标为(
4
3
3
4
3
).
点评:此题主要考查了二次函数的综合题,涉及了图形的旋转变化、解直角三角形、二次函数解析式的确定、等腰梯形的判定和性质等重要知识点,难度较大,注意各知识点的融会贯通.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•定西)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=
50
50
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•定西)为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P,使P到该镇所属A村,B村,C村的距离都相等(A,B,C不在同一直线上,地理位置如图所示),请你用尺规作图的方法确定点P的位置.
要求:不写已知,求作,只保留作图痕迹.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•定西)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和给顾客返还相同价格的购物券,可以在本商场消费,某顾客刚消费了200元.
(1)该顾客至少可得到
10
10
元购物券,至多可得到
50
50
元购物券;
(2)请你用画树状图或列表的方法,求出顾客所获得购物券的金额不低于30元的概率.

查看答案和解析>>

科目:初中数学 来源:2010年山东省淄博市中考数学模拟试卷(一)(解析版) 题型:选择题

(2012•定西)如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案