精英家教网 > 初中数学 > 题目详情

D为等边△ABC外一点,且BD=CD,∠BDC=120°,点M,N分别在AB,AC上,若BM+CN=MN,
求证:
(1)∠MDN=60°;
(2)作出△DMN的高DH,并证明DH=BD.

证明:(1)延长NC到E,使CE=BM,连接DE.
∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∵BD=CD,∠BDC=120°,
∴∠CBD=∠BCD=30°,
∴∠ABD=∠ACD=90°,
在直角△BDM和直角△CDE中,
∴Rt△BDM≌Rt△CDE,
∴DM=DE,∠BDM=∠CDE,
∴∠MDE=∠BDC=120°,
在△MDN和△EDN中,
∴△MDN≌△EDN,
∴∠MDN=∠EDN=60°;

(2)∵△MDN≌△EDN,
∴∠MND=∠DNE,
又∵DH⊥MN,DC⊥AC,
∴DH=DC,
∵BD=DC,
∴DH=BD.
分析:(1)延长NC到E,使CE=BM,连接DE,根据等腰三角形的性质以及等边三角形的性质可以得到△BDM和△CDE都是直角三角形,易证这两个三角形全等,根据全等三角形的性质即可证得;
(2)根据△MDN≌△EDN可以证得∠MND=∠DNE,然后根据角平分线的性质即可证得.
点评:本题考查了全等三角形的判定与性质,以及角平分线的性质,正确作出辅助线,把BM+CN=MN转化成两条线段相等,构造全等的三角形是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图一,已知点P是边长为a的等边△ABC内任意一点,点P到三边的距离PD、PE、PF的长分别记为h1,h2,h3,则h1,h2,h3之间有什么关系呢?
分析:连接PA、PB、PC,则△ABC被分割成三个三角形,根据:
S△PAB+S△PBC+S△PAC=S△ABC,即:
1
2
ah1+
1
2
ah2+
1
2
ah3=
3
4
a2
,可得h1+h2+h3=
3
2
a

问题1:若点P是边长为a的等边△ABC外一点(如图二所示位置),点P到三边的距离PD、PE、PF的长分别记为h1,h2,h3.探索h1,h2,h3之间有什么关系呢?并证明你的结论;
问题2:如图三,正方形ABCD的边长为a,点P是BC边上任意一点(可与B、C重合),B、C、D三点到射线AP的距离分别是h1,h2,h3,设h1+h2+h3=y,线段AP=x,求y与x的函数关系式,并求y的最大值与最小值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

22、有这样一个问题,如图,在等边△ABC外作一锐角∠PAC,在AP上截取AD=BC,为了求∠BDC的度数,小明做了如下提示:以A为圆心,以AB为半径作圆,
(1)根据提示画图;
(2)写出∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图一,已知点P是边长为a的等边△ABC内任意一点,点P到三边的距离PD、PE、PF的长分别记为h1,h2,h3,则h1,h2,h3之间有什么关系呢?
分析:连接PA、PB、PC,则△ABC被分割成三个三角形,根据:
S△PAB+S△PBC+S△PAC=S△ABC,即:数学公式,可得数学公式
问题1:若点P是边长为a的等边△ABC外一点(如图二所示位置),点P到三边的距离PD、PE、PF的长分别记为h1,h2,h3.探索h1,h2,h3之间有什么关系呢?并证明你的结论;
问题2:如图三,正方形ABCD的边长为a,点P是BC边上任意一点(可与B、C重合),B、C、D三点到射线AP的距离分别是h1,h2,h3,设h1+h2+h3=y,线段AP=x,求y与x的函数关系式,并求y的最大值与最小值.

查看答案和解析>>

科目:初中数学 来源:2010-2011学年北京市人大附中九年级(上)数学统练试卷(2)(解析版) 题型:解答题

有这样一个问题,如图,在等边△ABC外作一锐角∠PAC,在AP上截取AD=BC,为了求∠BDC的度数,小明做了如下提示:以A为圆心,以AB为半径作圆,
(1)根据提示画图;
(2)写出∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源:2009年天津市河西区中考数学一模试卷(解析版) 题型:解答题

如图一,已知点P是边长为a的等边△ABC内任意一点,点P到三边的距离PD、PE、PF的长分别记为h1,h2,h3,则h1,h2,h3之间有什么关系呢?
分析:连接PA、PB、PC,则△ABC被分割成三个三角形,根据:
S△PAB+S△PBC+S△PAC=S△ABC,即:,可得
问题1:若点P是边长为a的等边△ABC外一点(如图二所示位置),点P到三边的距离PD、PE、PF的长分别记为h1,h2,h3.探索h1,h2,h3之间有什么关系呢?并证明你的结论;
问题2:如图三,正方形ABCD的边长为a,点P是BC边上任意一点(可与B、C重合),B、C、D三点到射线AP的距离分别是h1,h2,h3,设h1+h2+h3=y,线段AP=x,求y与x的函数关系式,并求y的最大值与最小值.

查看答案和解析>>

同步练习册答案