精英家教网 > 初中数学 > 题目详情
(2009•河西区一模)如图,将△BCE绕着点C顺时针旋转60°得到△ACD,AC交BE与点F,AD交CE于点G,AD交BE于点P,连接AB和ED.
(1)判断△ABC和△ECD的形状,并说明理由;
(2)求证:△ABF∽△CGD.
分析:(1)根据旋转的性质,可以得到这两个三角形都是等腰三角形,且有一个角是60°,则可以证得两个三角形都是等边三角形;
(2)可以证得:AB∥∥CE,根据平行线的性质以及全等三角形的性质,即可证得△ABF和△CGD有两个角对应相等,从而求证.
解答:(1)解:△ABC和△ECD都是等边三角形.
理由如下:
∵将△BCE绕C顺时针旋转60°得到△ACD,
∴BC=AC,∠BCD=60°,同理CE=CD,∠ECD=60°
∴△ABC和△ECD都是等边三角形.

(2)证明:∵△BCE绕C顺时针旋转得到△ACD.
∴△BCE≌△ACD
∴∠BEC=∠ADC
∵△ABC和△ECD都是等边三角形
∴∠BAC=∠ABC=∠ECD=60°
∴AB∥EC
∴∠ABF=∠BEC
∴∠ABF=∠ADC
又∵∠BAC=∠ECD
∴△ABF∽△CGD.
点评:本题考查了旋转的性质,以及三角形全等与相似的判定与性质,理解旋转的性质是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2009•河西区一模)下列不等关系表示正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•河西区一模)如图所示,在半径为r的圆内作一个内接正三角形,依次再作内切圆,那么图中最小的圆的半径是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•河西区一模)如图,已知PA,PB分别切⊙O于A、B,CD切⊙O于E,PO=13,AO=5,则△PCD周长为
24
24

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•河西区一模)如图,正方形的边长为a,分别以正方形的四个顶点为圆心,以
a
2
为半径作圆,则图中的阴影面积为
4-π
4
a2
4-π
4
a2

查看答案和解析>>

同步练习册答案