【题目】如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2.
(1)求一次函数的解析式;
(2)求△AOB的面积.
【答案】(1)y=x+2;(2)6.
【解析】
(1)由点A、B的横纵坐标结合反比例函数解析式即可得出点A、B的坐标,再由点A、B的坐标利用待定系数法即可得出直线AB的解析式;
(2)先找出点C的坐标,利用三角形的面积公式结合A、B点的纵坐标即可得出结论.
(1)反比例函数y=,x=2,则y=4,
∴点A的坐标为(2,4);
反比例函数y=中y=-2,则-2=,解得:x=-4,
∴点B的坐标为(-4,-2).
∵一次函数过A、B两点,
∴
解得:.
∴一次函数的解析式为y=x+2.
(2))令y=x+2中x=0,则y=2,
∴点C的坐标为(0,2),
∴S△AOB=OC(xA-xB)=×2×[2-(-4)]=6.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=-x2+(m+1)x-m(m为常数).
(1)求证:不论m为何值,该二次函数的图像与x轴总有公共点;
(2)若该二次函数的图像与x轴交于不同的两点A、B,与y轴交于点C,且AB2=2OC2(O为坐标原点),求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).
(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;
(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】三张背面完全相同的卡片,它们的正面分别标有数字﹣1,0,1,将他们背面朝上,洗匀后随机抽取一张,把正面的数字作为b,接着再抽取一张,把正面的数字作为c,则满足关于x的一元二次方程x2+bx+c=0有实数根的概率是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+3 的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C
(1)求此二次函数解析式;
(2)点D为抛物线的顶点,试判断△BCD的形状,并说明理由;
(3)将直线BC向上平移t(t>0)个单位,平移后的直线与抛物线交于M,N两点(点M在y轴的右侧),当△AMN为直角三角形时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF的延长线于点E,交AB的延长线于点D.
(1)求证:DE是⊙O的切线;
(2)若AE=3,DE=4,求⊙O的半径的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,直线y=-x+b与抛物线y=-x2+4x+c交于P、Q两点.
(1)若点P坐标为(1,2),
①求c的值;
②求Q点坐标;
(2)若 P、Q两点的横坐标分别为m、n,且0<m<n.分别过点P、Q作PA、QB垂直于x轴,垂足分别为点A、B.当△AOP≌△BQO时.
①求m+n的值;
②求证:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com