精英家教网 > 初中数学 > 题目详情

在平面直角坐标系x、y中,过原点O及点A(0,2)、C(6,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动.设移动时间为t秒.

(1)当点P移动到点D时,求出此时t的值;
(2)当t为何值时,△PQB为直角三角形;
(3)已知过O、P、Q三点的抛物线解析式为(t>0).问是否存在某一时刻t,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由.

(1)2(2)当t=2或时,△PQB为直角三角形(3)存在t=或t=2,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点正方形.如图,菱形ABCD的四个顶点坐标分别是(-8,0),(0,4),(8,0),(0,-4),则菱形ABCD能覆盖的单位格点正方形的个数是
48
个;若菱形AnBnCnDn的四个顶点坐标分别为(-2n,0),(0,n),(2n,0),(0,-n)(n为正整数),则菱形AnBnCnDn能覆盖的单位格点正方形的个数为
4n2-4n
(用含有n的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

4、在平面直角坐标系中,以点(2,1)为圆心,1为半径的圆,必与(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为
2
-1,直线l:y=-x-
2
与坐标轴分别交于A、C两点,点B的坐标为(4,1),⊙B与x轴相切于点M.
(1)求点A的坐标及∠CAO的度数;
(2)⊙B以每秒1个单位长度的速度沿想x轴负方向平移,同时,直线l绕点A以每秒钟旋转30°的速度顺时针匀速旋转,当⊙B第一次与⊙O相切时,请判断直线ι与⊙B的位置关系,并说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

3、已知:矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,-2),则矩形的面积等于
6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.
(1)若∠A=∠AOC,求证:∠B=∠BOC;
精英家教网
(2)延长AB交x轴于点E,过O作OD⊥AB,且∠DOB=∠EOB,∠OAE=∠OEA,求∠A度数;
(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,当△ABO绕O点旋转时(斜边AB与y轴正半轴始终相交于点C),在(2)的条件下,试问∠P的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.

查看答案和解析>>

同步练习册答案