精英家教网 > 初中数学 > 题目详情

如图,点E,FBC上,BE=CF,AB=DC,∠B=∠C.求证∠A=∠D.

分析:通过证明△ABF≌△DCE,来证明∠A=∠D.

证明:∵ BE=CF,∴ BE+EF=CF+EF,即BF=CE.

在△ABF和△DCE中,∵  

∴ △ABF≌△DCE,∴ ∠A=∠D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、已知,△ABC是等边三角形,将一块含30°角的直角三角板DEF如图放置,让三角板在BC所在的直线l上向右平移.当点E与点B重合时,点A恰好落在三角板的斜边DF上.
问:在三角板平移过程中,图中是否存在与线段EB始终相等的线段(假定AB、AC与三角板斜边的交点为G、H)?如果存在,请指出这条线段,并证明;如果不存在,请说明理由.
(说明:结论中不得含有图中未标识的字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)化简:(a-
1
a
)÷
a2-2a+1
a

(2)已知:在△ABC中,AB=AC.
①设△ABC的周长为7,BC=y,AB=x(2≤x≤3).写出y关于x的函数关系式;
②如图,点D是线段BC上一点,连接AD,若∠B=∠BAD,求证:△BAC∽△BDA.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是CE的中点,连接BM.
(1)如图①,点D在AB上,连接DM,并延长DM交BC于点N,可探究得出BD与BM的数量关系为
 

(2)如图②,点D不在AB上,(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河北)如图,点E是线段BC的中点,分别以BC为直角顶点的△EAB和△EDC均是等腰三角形,且在BC同侧.
(1)AE和ED的数量关系为
AE=ED
AE=ED
;AE和ED的位置关系为
AE⊥ED
AE⊥ED

(2)在图1中,以点E为位似中心,作△EGF与△EAB位似,点H是BC所在直线上的一点,连接GH,HD.分别得到图2和图3.
①在图2中,点F在BE上,△EGF与△EAB的相似比1:2,H是EC的中点.求证:GH=HD,GH⊥HD.
②在图3中,点F在的BE延长线上,△EGF与△EAB的相似比是k:1,若BC=2,请直接写CH的长为多少时,恰好使GH=HD且GH⊥HD(用含k的代数式表示).

查看答案和解析>>

同步练习册答案