【题目】如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,E为线段BC上一点,AE交CD于G,且GC=GE,EF⊥BC交AB于点F.
(1)求证:AE2=AFAB;
(2)连FG,若BE=2CE,求tan∠AFG;
(3)如图2,当tanB= 时,CE=FE(请直接写出结果,不需要解答过程).
【答案】(1)证明见解析;(2)tan∠AFG=;(3).
【解析】
(1)先证明∠AEF=∠B,然后再证明△AEF∽△ABE,最后根据相似三角形的性质即可证明;
(2)设CE=a.则BE=2a,证明△AEC∽△BAC,得到AC=a,易得∠AFG=60°,最后根据特殊角的三角函数值求解即可;
(3)设BE=a,CE=EF=b,证明 △AEC∽△BAC.得到AC=,证明△BEF∽△BCA得到a、b的关系,最后根据正切的定义解答即可.
(1)证明:∵GC=GE,
∴∠GCE=∠GEC,
∵CD⊥AB,
∴∠DCE+∠B=90°,
∵EF⊥BC,
∴∠GEC+∠AEF=90°,
∴∠AEF=∠B,又∠EAF=∠BAE,
∴△AEF∽△ABE,
∴=,
∴AE2=AFAB;
(2)设CE=a,则BE=2a,
∵∠DCB+∠B=90°,∠CAB+∠B=90°,
∴∠DCB=∠CAB,
∵∠GCE=∠GEC,
∴∠CAB=∠GEC,又∠ACE=∠BCA=90°,
∴△AEC∽△BAC,
∴=,即=,
解得,AC=a,
∴∠CAE=∠BAE=∠AEF=30°,
∴FA=FE,
∵∠GAC=∠GCA=30°,
∴GA=GC,
∵GC=GE,
∴GA=GE,又FA=FE,
∴∠AFG=60°,
∴tan∠AFG=;
(3)设BE=a,CE=EF=b,
∵△AEC∽△BAC,
∴=,即=,
解得,AC2=b(a+b),
∴AC=,
∵EF∥AC,
∴△BEF∽△BCA,
∴=,即=,
整理得,b2+ab﹣a2=0,
则()2+﹣1=0,
解得:=,
∴tanB==
故答案为:.
科目:初中数学 来源: 题型:
【题目】某中学为了了解七年级男生入学时的跳绳情况,随机选取50名刚入学的男生进行个人一分钟跳绳测试,并以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图(如图所示).根据图表解答下列问题:
(1)a= ,b= ;
(2)这个样本数据的中位数落在第 组;
(3)若七年级男生个人一分钟跳绳次数x≥130时成绩为优秀,则从这50名男生中任意选一人,跳绳成绩为优秀的概率为多少;
(4)若该校七年级入学时男生共有150人,请估计此时该校七年级男生个人一分钟跳绳成绩为优秀的人数.
组别 | 次数x | 频数(人数) |
第1组 | 50≤x<70 | 4 |
第2组 | 70≤x<90 | a |
第3组 | 90≤x<110 | 18 |
第4组 | 110≤x<130 | b |
第5组 | 130≤x<150 | 4 |
第6组 | 150≤x<170 | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )
A. 36=15+21 B. 25=9+16 C. 13=3+10 D. 49=18+31
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABE中,点A、B是反比例函数y=(k≠0)图象上的两点,点E在x轴上,延长线段AB交y轴于点C,点B恰为线段AC中点,过点A作AD⊥x轴于点D.若S△ABE=,DE=2OE,则k的值为( )
A.6B.﹣6C.9D.﹣9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察算式:; ;;,...请根据你发现的规律填空:
(1)_________.
(2)用含n 的等式表示上面的规律:__________.
(3)用找到的规律解决下面的问题:计算:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学习概率的课堂上,老师提出问题:一口袋装有除颜色外均相同的2个红球1个白球和1个篮球,小刚和小明想通过摸球来决定谁去看电影,同学甲设计了如下的方案:第一次随机从口袋中摸出一球(不放回);第二次再任意摸出一球,两人胜负规则如下:摸到“一红一白”,则小刚看电影;摸到“一白一蓝”,则小明看电影.
(1)同学甲的方案公平吗?请用列表或画树状图的方法说明;
(2)你若认为这个方案不公平,那么请你改变一下规则,设计一个公平的方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,在正方形ABCD中,E是AB上一点,G是AD上一点,∠ECG=45°,那么EG与图中两条线段的和相等?证明你的结论.
(2)请用(1)中所积累的经验和知识完成此题,如图,在四边形ABCG中,AG//BC(BC>AG),∠B=90°,AB=BC=12,E是AB上一点,且∠ECG=45°,BE=4,求EG的长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…n(n+1)=?
观察下面三个特殊的等式:
1×2=(1×2×3﹣0×1×2)
2×3=(2×3×4﹣1×2×3)
3×4=(3×4×5﹣2×3×4)
将这三个等式的两边相加,可以得到1×2+2×3+3×4=×3×4×5=20,
读完这段材料,请你思考后回答:
(1)1×2+2×3+…+10×11=________________;
(2)1×2+2×3+3×4+…+n×(n+1)=_________________________;
(3)1×2×3+2×3×4+…+n(n+1)(n+2)=______________________________.
(只需写出结果,不必写中间的过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了丰富同学们的课外活动,决定给全校20个班每班配4副乒乓球拍和若干乒乓球,两家体育用品商店对同一款乒乓球拍和乒乓球推出让利活动,甲商店买一副乒乓球拍送10个乒乓球,乙商店所有商品均打九折(按标价的90%)销售,已知2副乒乓球拍和10个乒乓球110元,3副乒乓球拍和20个乒乓球170元。
请解答下列问题:
(1)求每副乒乓球拍和每个乒乓球的单价为多少元.
(2)若每班配4副乒乓球拍和40个乒乓球,则甲商店的费用为 元,乙商店的费用为 元.
(3)每班配4副乒乓球拍和m(m>100)个乒乓球则甲商店的费用为 元,乙商店的费用为 元.
(4)若该校只在一家商店购买,你认为在哪家超市购买更划算?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com