精英家教网 > 初中数学 > 题目详情
已知整数x同时满足不等式3x-4≤6x-2和
2x+1
3
-1<
x-1
2
,并且满足方程3(x+a)-5a+2=0,求3a2-
1
4
(a-2)3
的值.
分析:因为整数x同时满足不等式3x-4≤6x-2和
2x+1
3
-1<
x-1
2
,故可建立起不等式组,求出不等式组的整数解,代入方程3(x+a)-5a+2=0,求出a的值,再代入方程求出3a2-
1
4
(a-2)3求值即可.
解答:解:由
3x-4≤6x-2
2x+1
3
-1<
x-1
2
得,
-
2
3
≤x<1,(3分)
整数解为x=0,
∴3a-5a+2=0解得:a=1;(6分)
∴原式=3×1-
1
4
(1-2)3=3
1
4
.(7分)
点评:此题综合考查了不等式组和方程的解法,将不等式组的整数解代入方程3(x+a)-5a+2=0,使关于x的方程转化为关于a的方程来解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知下面著名的“勾股定理”:在一个直角三角形中,两条直角边的平方之和等于斜边的平方.
试问:是否存在同时满足下列两个条件的直角三角形?
(1)三条边长均是正整数;
(2)一条直角边为素数(也称质数)p.若存在,请求出另一条直角边长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c.点E是AC边上的一个动点(点E与点A、C不重合),点F是AB边上的一个动点(点F与点A、B不重合),连接EF.
(1)当a、b满足a2+b2-16a-12b+100=0,且c是不等式组
x+2
4
≤x+6
2x+2
3
>x-3
的最大整数解时,试说明△ABC的形状;
(2)在(1)的条件得到满足的△ABC中,若EF平分△ABC的周长,设AE=x,y表示△AEF的面积,试写出y关于x的函数关系式;
(3)在(1)的条件得到满足的△ABC中,是否存在线段EF,将△ABC的周长和面积同时平分?若存在,则求出AE的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

金秋十月,某果树种植基地种植的柑橘喜获丰收,第一天销售量就为1650千克,第二天销售量为1750千克,且销售量p(千克)与天数x(天)(1≤x≤7且x为整数)满足一次函数关系.而市场价格q(元/千克)与天数x(天)之间满足q=-0.2x+5(1≤x≤7且x为整数).
(1)求销售量p(千克)与天数x(天)(1≤x≤7且x为整数)之间的函数关系式;
(2)第几天的销售额最大?并求这个最大值及当天价格和销售量;
(3)由于同类产品的大量上市,销售第二周平均每天的价格在(2)中价格的基础上下降了8a%(q<a<10),平均每天的销售量在(2)中销售量的基础上上涨了5a%.同时,根据市场需求,该果园基地在第二周还将4100千克的柑橘深加工,将橘子果肉与冰糖水等按4:6的比例制成橘子罐头,并按每瓶500克的方式装瓶出售(制作过程中的损耗忽略不计),已知平均每千克的橘子含0.6千克的果肉.每瓶橘子罐头的成本为3.5元,按比成本价高20a%的售价出售,该基地第二周将这批橘子罐头全部售出,第二周该果园基地销售总额共计143500元,请你参考以下数据,估算出a的整数值.(
6
≈2.4
8
≈2.8
174
≈13.4

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|=0,请回答问题
(1)请直接写出a、b、c的值.a=
-1
-1
,b=
1
1
,c=
5
5

(2)a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|-|x-1|+2|x+5|(请写出化简过程)

(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|=0.
(1)请求出a、b、c的值;
(2)a、b、c所对应的点分别为A、B、C,点P为动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|-|x-1|+2|x+3|;(写出化简过程)
(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.

查看答案和解析>>

同步练习册答案