精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,ABAC,∠BAC50° ,DBC的中点,以AC为腰向外作等腰直角ACE,∠EAC90°,连接BE,交AD于点F,交AC于点G

(1)求AEB的度数;

(2)求证:AEBACF

(3)AB4,求的值

【答案】(1)20°;(2)32.

【解析】

(1)根据等腰直角三角形的旋转得出∠ABE=AEB,求出∠BAE,根据三角形内角和定理求出即可;
(2)根据等腰三角形的性质得出∠BAF=CAF,根据SAS推出BAF≌△CAF,根据全等得出∠ABF=ACF,即可得出答案;
(3)根据全等得出BF=CF,求出∠CFG=EAG=90°,根据勾股定理求出EF2+BF2=EF2+CF2=EC2,EC2=AC2+AE2,即可得出答案.

(1)AB=AC,AC=AE.

AB=AE,

∴∠AEB=ABE.

∵∠BAC=50°,CAE=90°,

∴∠BAE=50°+90°=140°.

∴∠AEB=

(2)AB=AC,DBC的中点,

∴∠BAF=CAF.

∴△ABF≌△ACF.

∴∠ABF=ACF.

∵∠AEB=ABE,

∴∠AEB=ACF.

(3)∵∠AEB=ACF ,AGE=CGF,

∴∠CFE=CAE=90°.

CF=BF,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】中学生带手机上学的现象越来越受到社会的关注,为此,某记者随机调查了某城区若干名学生家长对这种现象的态度(态度分为:A:无所谓;B:基本赞成;C:赞成;D:反对),并将调查结果绘制成频数折线图1和统计图2(不完整)。请根据图中提供的信息,解答下列问题:

1)此次抽样检查中,共调查了  名学生家长;

2)将图1补充完整;

3)根据抽样检查的结果,请你估计该市城区6000名中学生家长中有多少名家长持反对态度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,ABC是等边三角形,P是三角形内一点,PDABPEBCPFAC,若ABC的周长为18,则PD+PE+PF=(  )

A. 18B. 9

C. 6D. 条件不够,不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣1,0),且OC=OB,tan∠ACO=

(1)求抛物线的解析式;
(2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值;
(3)在(2)的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是∠ABC的平分线,EDBC,∠4=∠5,则EF也是∠AED的平分线.完成下列推理过程:

证明:∵BD是∠ABC的平分线(已知)

∴∠1=∠2(角平分线定义)

EDBC(已知)

∴∠5=∠2   

∴∠1=∠5(等量代换)

∵∠4=∠5(已知)

EF      

∴∠3=∠1   

∴∠3=∠4(等量代换)

EF是∠AED的平分线(角平分线定义)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是(
A.b≥
B.b≥1或b≤﹣1
C.b≥2
D.1≤b≤2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BC为半圆的直径,O为圆心,D是弧AC的中点,四边形ABCD的对角线AC,BD交于点E,BC= ,CD= ,则sin∠AEB的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于实数a,我们规定:用符号表示不大于的最大整数,称a的根整数,例如:=3

(1)仿照以上方法计算:=______=_____

(2),写出满足题意的x的整数值______

如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2 =1,这时候结果为1

(3)100连续求根整数,____次之后结果为1

(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=1,BC=2,BC在x轴上,一次函数y=kx﹣2的图象经过点A、C,并与y轴交于点E,反比例函数y= 的图象经过点A.

(1)点E的坐标是
(2)求反比例函数的解析式;
(3)求当一次函数的值小于反比例函数的值时,x的取值范围.

查看答案和解析>>

同步练习册答案