精英家教网 > 初中数学 > 题目详情
反比例函数y=
k
x
(k≠0)的图象经过P,如图所示,根据图象可知,反比例函数的解析式为______.
设反比例函数的解析式为y=
k
x
(k≠0),
由图象可知,函数经过点P(-1,-2),
∴-2=
k
-1
得k=2,
∴反比例函数解析式为y=
2
x

故答案为:y=
2
x
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知双曲线y=
k-3
x
(k为常数)与过原点的直线相交于A、B两点,第一象限内的点M(点M在A的上方)是双曲线y=
k-3
x
上的一动点,设直线AM、BM分别与y轴交于P、Q两点.
(1)若直线AB的解析式为y=
1
6
x
,A点的坐标为(a,1),
①求a、k的值;
②当AM=2MP时,求点P的坐标.
(2)若AM=m•MP,BM=n•MQ,试问m-n的值是否为定值?若是求出它的值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知在平面直角坐标系中,点O是坐标原点,直线y=kx+b与x轴、y轴分别交于点A、B,与双曲线y=
m
x
相交于点C、D,且点D的坐标为(1,6).
(1)如图1,当点C的横坐标为2时,求点C的坐标和
CD
AB
的值;
(2)如图2,当点A落在x轴负半轴时,过点C作x轴的垂线,垂足为E,过点D作y轴的垂线,垂足为F,连接EF.
①判断△EFC的面积和△EFD的面积是否相等,并说明理由;
②当
CD
AB
=2
时,求点C的坐标和tan∠OAB的值;
(3)若tan∠OAB=
1
7
,请直接写出
CD
AB
的值(不必书写解题过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数y=
k
x
(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若
BE
BF
=
1
m
(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则
S1
S2
=______.(用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在△ABC中,设BC=x,BC上的高为y,△ABC的面积等于4.?
(1)写出y和x之间的函数关系式,并指出自变量x的取值范围;然后作出它的函数图象;
(2)当△ABC为等腰直角三角形时,求出图象上对应点D、E的坐标;?
(3)求△DOE的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,第四象限的角平分线OM与反比例函数y=
k
x
(k≠0)的图象交于点A,已知OA=3
2
,则该函数的解析式为(  )
A.y=
3
x
B.y=-
3
x
C.y=
9
x
D.y=-
9
x

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=2x-k与反比例函数y=
k+2
x
的图象相交于A和B两点,如果有一个交点A的横坐标为3.
(1)求k的值;
(2)求A、B两点的坐标;
(3)求△AOB的面积;
(4)求使一次函数的值比反比例函数的值大的x取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,M为双曲线y=
2
x
上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于D、C两点,若直线y=-x+m与y轴交于点A,与x轴交于点B,则AD•BC的值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图一次函数y=k1x+b的图象与反比例函数y=
k2
x
的图象交于点A(1,6),B(3,a).
(1)求k1、k2的值;
(2)直接写出一次函数y=k1x+b的值大于反比例函数y=
k2
x
的值时x的取值范围:______;
(3)如图,等腰梯形OBCD中,BCOD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当点P为CE的中点时,求梯形OBCD的面积.

查看答案和解析>>

同步练习册答案