精英家教网 > 初中数学 > 题目详情

【题目】如图一次函数的图象分别交x轴、y轴于点A,B,与反比例函数图象在第二象限交于点C(m,6),轴于点D,OA=OD.

(1)求m的值和一次函数的表达式;

(2)在X轴上求点P,使CAP为等腰三角形(求出所有符合条件的点)

【答案】

1

2 P0

【解析】

解:Cm,6)在反比例函数

∴6m=-24∴m=-4

C的坐标是(-46),………………………………………………………1

轴,∴D的坐标是(-40),

∵OAOD∴A的坐标为(40),

A40),C(-46)代入

……………………………………………………………………2

解得………………………………………………………………………4

一次函数的表达式为………………………………………………5

如图:

若以PA为底,则PD=AD8

∴OP=12∴P(-120); ………………………………………………………6

若以PC为底,则APAC=10

PA左侧时,OP6∴P(-60);………………………………………7

PA右侧时,OP14∴P140);………………………………………8

若以AC为底,设AP=PCx,则DP8x

,解得x=.

∴OP4∴P0

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCDBCEFAFBEAFBE交于点G,∠AGB=60°.

(1)求证:AFDE

(2)AB=6,BC=8,求AF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数,试问:按这种方法能组成哪些位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.

(1)求∠DCE的度数;

(2)若AB=4,CD=3AD,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在三角形中,,且.点从点出发,沿方向匀速运动,速度为;同时点点出发,沿方向匀速运动,速度为,过点的动直线,交于点,连结,设运动时间为,解答下列问题:

1)线段_________

2)求证:

3)当为何值时,以为顶点的四边形为平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在RtABC中,ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:EDBC;②∠A=EBA;EB平分AED;ED=AB中,一定正确的是( )

A.①②③ B.①②④ C.①③④ D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线ACBD交于点O,且ADO为等边三角形,过点AAEBD于点E.

(1)ABD的度数;

(2)BD=10,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长是,连接交于点O,并分别与边交于点,连接AE,下列结论: 时, ,其中正确结论的个数是

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形 ABCD 中,AB=6cmAD=8cm,直线 EF 从点 A 出发沿 AD 方向匀速运动,速度是 2cm/s,运动过程中始终保持 EFACF

AD E,交 DC 于点 F;同时,点 P 从点 C 出发沿 CB 方向匀速运动,速度是 1cm/s,连接 PEPF,设运动时间 ts)(0<t<4).

(1) t=1 时,求 EF 长;

(2) t 为何值时,四边形 EPCD 为矩形;

(3)PEF 的面积为 Scm2),求出面积 S 关于时间 t 的表达式;

(4)在运动过程中,是否存在某一时刻使 SPC FS 矩形 ABCD=3:16?若存在, 求出 t 的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案