【题目】如图,平面内的两条直线l1、l2,点A、B在直线l2上,过点A、B两点分别作直线l1的垂线,垂足分别为A1、B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T(AB,l2),特别地,线段AC在直线l2上的正投影就是线段A1C,请依据上述定义解决如下问题.
(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)= ;
(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积;
(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD).
【答案】(1)2 ;(2)△ABC的面积=39;(3)T(BC,CD)=
【解析】
(1)如图1,过C作CH⊥AB,根据正投影的定义求出BH的长即可;
(2)如图2,过点C作CH⊥AB于H,由正投影的定义可知AH=4,BH=9,再根据相似三角形的性质求出CH的长即可解决问题;
(3)如图3,过C作CH⊥AB于H,过B作BK⊥CD于K,求出CD、DK即可得答案.
(1)如图1,过C作CH⊥AB,垂足为H,
∵T(AC,AB)=3,
∴AH=3,
∵AB=5,
∴BH=AB-AH=2,
∴T(BC,AB)=BH=2,
故答案为:2;
(2)如图2,过点C作CH⊥AB于H,
则∠AHC=∠CHB=90°,
∴∠B+∠HCB=90°,
∵∠ACB=90°,
∴∠B+∠A=90°
∴∠A=∠HCB,
∴△ACH∽△CBH,
∴CH:BH=AH:CH,
∴CH2=AH·BH,
∵T(AC,AB)=4,T(BC,AB)=9,
∴AH=4,BH=9,
∴AB=AH+BH=13,CH=6,
∴S△ABC=(AB·CH)÷2=13×6÷2=39;
(3)如图3,过C作CH⊥AB于H,过B作BK⊥CD于K,
∵∠ACD=90°,T(AD,AC)=2,
∴AC=2,
∵∠A=60°,
∴∠ADC=∠BDK=30°,
∴CD=AC·tan60°=2,AD=2AC=4,AH=
AC=1,
∴DH=4-1=3,
∵T(BC,AB)=6,CH⊥AB,
∴BH=6,
∴DB=BH-DH=3,
在Rt△BDK中,∠K=90°,BD=3,∠BDK=30°,
∴DK=BD·cos30°=,
∴T(BC,CD)=CK=CD+DK=+
=
.
科目:初中数学 来源: 题型:
【题目】△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.
(1)如图(a)所示,当点D在线段BC上时.
①求证:△AEB≌△ADC;
②探究四边形BCGE是怎样特殊的四边形?并说明理由;
(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;
(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小亮分别从甲地和乙地同时出发,沿同一条路相向而行,小明开始跑步,中途改为步行,到达乙地恰好用小亮骑自行车以
的速度直接到甲地,两人离甲地的路程
与各自离开出发地的时间
之间的函数图象如图所示,
甲、乙两地之间的路程为______m,小明步行的速度为______
;
求小亮离甲地的路程y关于x的函数表达式,并写出自变量x的取值范围;
求两人相遇的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点
在边
上,
点
为边
上一动点,连接
与
关于
所在直线对称,点
分别为
的中点,连接
并延长交
所在直线于点
,连接
.当
为直角三角形时,
的长为_________ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E为CD上一点,若△ADE沿直线AE翻折,使点D落在BC边上点D′处.F为AD上一点,且DF=CD',EF与BD相交于点G,AD′与BD相交于点H.D′E∥BD,HG=4,则BD=__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC是⊙O的内接三角形,BT为⊙O的切线,B为切点,P为直线AB上一点,过P作BC的平行线交直线BT于点E,交直线AC于点F.
(1)如图 (1)所示,当P在线段AB上时,求证:PA·PB=PE·PF;
(2)如图 (2)所示,当P为线段BA延长线上一点时,第(1)题的结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果店经销进价分别为元/千克、
元/千克的甲、乙两种水果,下表是近两天的销售情况:(进价、售价均保持不变,利润=售价-进价)
时间 | 甲水果销量 | 乙水果销量 | 销售收入 |
周五 |
|
|
|
周六 |
|
|
|
(1)求甲、乙两种水果的销售单价;
(2)若水果店准备用不多于元的资金再购进两种水果共
千克,求最多能够进甲水果多少千克?
(3)在(2)的条件下,水果店销售完这千克水果能否实现利润为
元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解七、八年级学生对“新冠”传播与防治知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理和分析.部分信息如下:
a.七年级成绩频数分布直方图:
b.七年级成绩在70m
80这一组的是:
70,72,72,75,76,76,77,77,78,79,79
c.七、八年级成绩的平均数、中位数如下:
年级 | 平均数 | 中位数 |
七 | 76.9 | a |
八 | 79.2 | 79.5 |
根据以上信息,回答下列问题:
(1)在这次测试中,七年级在70分以上的有 人,表格中a的值为 ;
(2)在这次测试中,七年级学生甲与八年级学生乙的成绩都是79分,请判断两位学生在各自年级的排名谁更靠前;
(3)该校七年级学生有500人,假设全部参加此次测试,请你估计七年级成绩超过平均数76.9分的人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com