【题目】“重庆自然博物馆”坐落在美丽的缙云山脚下,该馆现有藏品11万余件,是全国中小学生研学实践教育基地,西大附中某数学兴趣小组,想测量博物馆的高度,他们先在博物馆正对面的大楼楼顶A处,测得博物馆底部B处的俯角为50°,测得博物馆顶端C的俯角为45°,再从楼底O经过平地到达F,再沿着斜坡向上到达E,最后经过平台达到B,测得OF=20米,平台EB的长为28.8米,已知,楼OA高为60.5米,斜坡EF的坡度i=1:2.4,A、O、F、E、B、C在同一平面内,则博物馆的高约为( )米.(参考数据:tan50°≈1.2)
A.10.5B.10.0C.12.0D.12.2
【答案】B
【解析】
延长CB交OF的延长线于G,作EH⊥OG于H,延长EB交OA于N,作CM⊥OA于M,设博物馆的高BC为x米,AM=y米,根据坡度的概念用x、y表示出FH、EH,根据正切的定义列出方程,解方程得到答案.
解:延长CB交OF的延长线于G,作EH⊥OG于H,延长EB交OA于N,作CM⊥OA于M,
则四边形MNBC为矩形,
∴MC=OG,MN=BC,
设博物馆的高BC为x米,AM=y米,
则MN=x,
∵∠ACM=45°,
∴MC=AM=y,
∴ON=60.5﹣x﹣y,
则EH=ON=60.5﹣x﹣y,
∵斜坡EF的坡度i=1:2.4,
∴FH=2.4×(60.5﹣x﹣y),
∴OG=OF+FH+HG=20+2.4×(60.5﹣x﹣y)+28.8=y,
整理得,2.4x+3.4y=194,
在Rt△ABN中,tan∠ABN=,即
整理得,y=5x,
把y=5x代入2.4x+3.4y=194,得x=10,即BC=10米,
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,在 ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( ).
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了迎接“五一”小长假的购物高峰.某服装专卖店老板小王准备购进甲、乙两种夏季服装.其中甲种服装每件的成本价比乙种服装的成本价多20元,甲种服装每件的售价为240元比乙种服装的售价多80元.小王用4000元购进甲种服装的数量与用3200元购进乙种服装的数量相同.
(1)甲种服装每件的成本是多少元?
(2)要使购进的甲、乙两种服装共200件的总利润(利润=售价-进价)不少于21100元,且不超过21700元,问小王有几种进货方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:实数x满足2a﹣3≤x≤2a+2,y1=x+a,y2=﹣2x+a+3,对于每一个x,p都取y1,y2中的较大值.若p的最小值是a2﹣1,则a的值是( )
A.0或﹣3B.2或﹣1C.1或2D.2或﹣3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y1=x2+bx+c与y2=x2+cx+b(b<c)的图象相交于点A,分别与y轴相交于点C,B,连接AB、AC.
(1)过点(1,0)作直线l平行于y轴,判断点A与直线l的位置关系,并说明理由.
(2)当A、C两点是二次函数y1=x2+bx+c图象上的对称点时,求b的值.
(3)当△ABC是等边三角形时,求点B的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某课外学习小组根据学习函数的经验,对函数y=x3﹣3x的图象与性质进行了探究.请补充完整以下探索过程:
(1)列表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … | ||||
y | … | ﹣2 | m | 2 | 0 | n | 2 | … |
请直接写出m,n的值;
(2)根据上表中的数据,在平面直角坐标系内补全该函数的图象;
(3)若函数y=x3﹣3x的图象上有三个点A(x1,y1),B(x2,y2),C(x3,y3),且x1<﹣2<x2<2<x3,则y1,y2,y3之间的大小关系为 (用“<”连接);
(4)若方程x3﹣3x=k有三个不同的实数根.请根据函数图象,直接写出k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是的直径,点在上,的平分线交于点,交于点.过点作的切线交的延长线于点,连接,.
(1)求证:,;
(2)过点分别作直线,垂线,垂足为,.若,,请你完成示意图并求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.
(1)求抛物线的表达式;
(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;
(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问△PBC的面积S能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标,若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于点D,点E在⊙O上, CE=CA,
AB,CE的延长线交于点F.
(1)求证:CE与⊙O相切;
(2)若⊙O的半径为3,EF=4,求BD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com