精英家教网 > 初中数学 > 题目详情
7.在有理数的原有运算法则中,我们定义新运算“@”如下:a@b=ab-b2,根据这个新规定可知x@(2x-3)=-2x2+12xy-3x-9.

分析 根据题目中的新规定可以求得题目中所求式子的值,本题得以解决.

解答 解:∵a@b=ab-b2
∴x@(2x-3)
=x(2x-3)-(2x-3)2
=2x2-3x-4x2+12xy-9
=-2x2+12xy-3x-9,
故答案为:-2x2+12xy-3x-9.

点评 本题考查整式的混合运算、有理数的混合运算,解答本题的关键是明确它们各自的计算方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图,网格中每个小正方形的边长都为1,A、B、C都在格点上,试问△ABC是直角三角形吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨,则每吨按政府补贴优惠价a元收费;若每月用水量超过14吨,则超过部分每吨按市场调节价b元收费.小刘家3月份用水10吨,交水费20元;4月份用水16吨,交水费35元.
(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?
(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;
(3)小刘预计他家5月份用水不会超过22吨,那么小刘家5月份最多交多少元水费?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:
(1)$\sqrt{8}$+|1-$\sqrt{2}$|-π0+($\frac{1}{2}$)-1
(2)(2$\sqrt{5}$-2$\sqrt{3}$)($\sqrt{12}$+$\sqrt{20}$)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,C到直线AF的距离是$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图所示,已知△ABC是等腰直角三角形,∠ABC=90°,AB=10,D为△ABC外的一点,连结AD、BD,过D作DH⊥AB,垂足为H,DH的延长线交AC于E.
(1)如图1,若BD=AB,且$\frac{HB}{HD}$=$\frac{3}{4}$,求AD的长;
(2)如图2,若△ABD是等边三角形,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,O为等腰三角形ABC的底边AB的中点,以AB为直径的半圆分别交AC,BC于于点E.
(1)求证:∠AOE=∠BOD.
(2)求证:$\widehat{AD}=\widehat{BE}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.在△ABC中,AB=10,AC=10,BC=8,则△ABC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=1.25.
(1)求直线AC的解析式.
(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)抛物线y=-x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴正半轴上),且△ODE沿DE折叠后点O落在边AB上O′处?

查看答案和解析>>

同步练习册答案