解:(1)x=2;
当DE经过点C时,∵DE⊥PQ,PD=QD,
∴PC=CQ,PC=6-x,CQ=2x,
即6-x=2x,得x=2,
∴当x=2时,当DE经过点C;
(2)分别过点Q、A作QN⊥BC,AM⊥BC垂足为M、N.
∵AB=AC=5cm,BC=6cm,
∴
(cm),
∵QN∥AM,
∴△QNC∽△AMC,
∴
,即
,
∴
,
又PC=6-x,
∴S
△PCQ=
=
,
∴y=S
△ABC-S
△PCQ=
-
,
即
;
(3)存在.
理由如下:
∵DE⊥PQ,
∴PQ⊥AC时△PQC∽△PDE
此时,△PQC∽△AMC
∴
即
∴
.
分析:(1)由于DE垂直平分PQ,所以只要CP=CQ,根据等腰三角形的性质,DE又是顶角的平分线,所以列出方程,求出x=2.
(2)由于四边形AQPB的形状不规则,所以可以用△ABC的面积减去△PQC的面积,而△PQC的面积可以用x表达,则四边形AQPB的面积也可以用x表达出来.
(3)假设存在,根据已知条件,易证△PQC∽△AMC,所以
,所以
,即
.
点评:本题需先证得三角形相似和待定系数法求二次函数解析式,再通过相似形的性质,解决问题,全面的考查了相似形的性质和判定.