精英家教网 > 初中数学 > 题目详情
16.在△ABC中,∠C=90°,BC=4cm,AC=3cm,把△ABC绕点A顺时针旋转90°后,得到△A1B1C1(如图所示),则线段AB所扫过的面积为(  )
A.5$\sqrt{2}$B.$\frac{25}{4}$πcm2C.$\frac{25}{2}$πcm2D.5πcm2

分析 先根据勾股定理求出AB的长,再由扇形的面积公式即可得出结论.

解答 解:∵在△ABC中,∠C=90°,BC=4cm,AC=3cm,
∴AB=$\sqrt{{BC}^{2}+{AC}^{2}}$=$\sqrt{{4}^{2}+{3}^{2}}$=5cm,
∴线段AB所扫过的面积是以点A为圆心,AB为半径,圆心角是90°扇形的面积=$\frac{90π×{5}^{2}}{360}$=$\frac{25π}{4}$cm2
故选B.

点评 本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.在平面直角坐标系中,如果点M(-1,a-1)在第三象限,那么a的取值范围是a<1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在平面直角坐标系中,点A、B的坐标分别为(a,0),(0,b),其中a,b满足$\sqrt{a-2b-18}$+|2a-5b-30|=0.将点B向右平移26个单位长度得到点C,如图①所示.
(1)求点A,B,C的坐标;
(2)点M,N分别为线段BC,OA上的两个动点,点M从点C向左以1.5个单位长度/秒运动,同时点N从点O向点A以2个单位长度/秒运动,如图②所示,设运动时间为t秒(0<t<15).
①当CM<AN时,求t的取值范围;
②是否存在一段时间,使得S四边形MNOB>2S四边形MNAC?若存在,求出t的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,每个图形都由同样大小的“”按照一定的规律组成,其中第1个图形有1个“”,第2个图形有2个“”,第3个图形有5个“”,…,则第6个图形中“”的个数为(  )
A.23B.24C.25D.26

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.在矩形ABCD中,AB=$\sqrt{2}$,BC=2,以A为圆心,AD为半径画弧交线段BC于E,连接DE,则阴影部分的面积为(  )
A.$\frac{π}{2}$-$\sqrt{2}$B.$\frac{π}{2}$-$\frac{\sqrt{2}}{2}$C.π-$\sqrt{2}$D.π-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)如图2,固定△ABC,将△DEC绕点C旋转,当点D恰好落在AB边上时,
①判断DE和AC的位置关系,并说明理由;
②设△BDC的面积为S1,△AEC的面积为S2,那么S1与S2的数量关系是S1=S2

(2)当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
(3)如图4,∠ABC=60°,点D在其角平分线上,BD=CD=6,DE∥AB交BC于点E,若点F在射线BA上,并且S△DCF=S△BDE,请直接写出相应的BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.下列命题:①两直线平行,同旁内角互补; ②三角形的外角和是180°; ③面积相等的三角形是全等三角形;④若n<1,则n2-1<0;其中,假命题的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.不等式组$\left\{\begin{array}{l}x-2>0\\ x-3<0\end{array}\right.$的解集是(  )
A.x>2B.x<3C.2<x<3D.无解

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.铅球的左视图是(  )
A.B.长方形C.正方形D.三角形

查看答案和解析>>

同步练习册答案