【题目】我国古代数学的许多发现都曾位居世界前列,如杨辉三角就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数降幂排列)的系数规律例如,在三角形中第一行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3ab+3ab2+b3展开式中的系数.结合对杨辉三角的理解完成以下问题
(1)(a+b)2展开式a2+2ab+b2中每一项的次数都是 次;
(a+b)3展开式a3+3a2b+3ab2+b3中每一项的次数都是 次;
那么(a+b)n展开式中每一项的次数都是 次.
(2)写出(a+1)4的展开式 .
(3)拓展应用:计算(x+1)5+(x﹣1)6+(x+1)7的结果中,x5项的系数为 .
【答案】(1)2,3,n;(2)a4+4a3b+6a2b2+4ab3+b4(3)16.
【解析】
(1)观察(a+b)2展开式和(a+b)3展开式中各项,即可得答案,从而推出(a+b)n的展开项;
(2)根据杨辉三角图中可知(a+1)4的展开式的各项系数,即可得解;
(3)(x+1)5中x5项的系数为1;再按杨辉三角,分别求得(x﹣1)6和(x+1)7展开式中x5项的系数,几个系数相加即可得答案.
解:(1)(a+b)2展开式a2+2ab+b2中的项分别为:a2、2ab、b2,它们的次数都是2,
(a+b)3展开式a3+3a2b+3ab2+b3中的项分别为:a3、3a2b、3ab2、b3,它们的次数都是3,
由此推出(a+b)n展开式的次数都是n,
故答案为:2,3,n;
(2)根据杨辉三角图中可知(a+1)4的展开式的各项系数分别为:1,4,6,4,1则展开式为:(a+1)4=a4+4a3b+6a2b2+4ab3+b4,
故答案为:a4+4a3b+6a2b2+4ab3+b4;
(3)(x+1)5中x5项的系数为1,
按照杨辉三角可知(x﹣1)6=x6+6x5(﹣1)+…+1,(x+1)7=x7+7x6×1+21x5×12+…+1,
∴(x+1)5+(x﹣1)6+(x+1)7的结果中,x5项的系数为:1+6×(﹣1)+21=16
故答案为:16.
科目:初中数学 来源: 题型:
【题目】抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后:
(1)朝上的点数有哪些结果?他们发生的可能性一样吗?
(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?
(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.
(1)求证:此方程总有两个实数根;
(2)若此方程有一个根大于0且小于1,求k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点,,点C为x轴正半轴上一动点,过点A作交y轴于点E.
如图,若点C的坐标为,试求点E的坐标;
如图,若点C在x轴正半轴上运动,且, 其它条件不变,连接DO,求证:OD平分
若点C在x轴正半轴上运动,当时,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△OAB中,OA=OB,以点O为圆心的⊙O经过AB的中点C,直线AO与⊙O相交于点E、D,OB交⊙O于点F,P是 的中点,连接CE、CF、BP.
(1)求证:AB是⊙O的切线.
(2)若OA=4,则
①当长为_____时,四边形OECF是菱形;
②当 长为_____时,四边形OCBP是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P、Q分别从点A、B同时开始移动,点P的速度为1 cm/秒,点Q的速度为2 cm/秒,点Q移动到点C后停止,点P也随之停止运动下列时间瞬间中,能使△PBQ的面积为15cm 的是( )
A. 2秒钟 B. 3秒钟 C. 4秒钟 D. 5秒钟
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点。试探索BM和BN的关系,并证明你的结论。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD中,点P沿着边按B→C→D→A方向运动,开始以每秒m个单位匀速运动、a秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动,在运动过程中,△ABP的面积S与运动时间t的函数关系如图所示.
(1)直接写出长方形的长和宽;
(2)求m,a,b的值;
(3)当P点在AD边上时,直接写出S与t的函数解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com