精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,在Rt△ABC中,∠C=90°,∠BAD=
1
2
∠BAC,过点D作DE⊥AB,DE恰好是∠ADB的平分线,求证:CD=
1
2
DB.
分析:由条件先证△BED≌△AED,得,∠B=∠2=∠1,再根据直角三角形的性质,两锐角的和为90°,求得∠B=30°即可得证.
解答:精英家教网解:∵DE⊥AB,
∴∠AED=∠BED=90°,
∵DE是∠ADB的平分线,
∴∠3=∠4,又∵DE=DE,
∴△BED≌△AED(ASA),
∴AD=BD,∠2=∠B,
∵∠BAD=∠2=
1
2
∠BAC,
∴∠1=∠2=∠B,
∵AD=BD,∠1+∠2+∠B=90°,
∴∠B=∠1=∠2=30°,
在直角三角形ACD中,∠1=30°,
∴CD=
1
2
AD=
1
2
BD.
点评:本题利用了:①全等三角形的判定和性质,②直角三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,过点B作BD∥AC,且BD=2AC,连接AD.试判断△ABD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)已知,如图,在Rt△ABC中,∠C=90°,以AC为直径的⊙O交斜边AB于E,OD∥AB.求证:①ED是⊙O的切线;②2DE2=BE•OD.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丰台区一模)已知:如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连结DE.
(1)求证:DE与⊙O相切;
(2)连结OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.
(1)求出cosB的值;
(2)用含y的代数式表示AE;
(3)求y与x之间的函数关系式,并求出x的取值范围;
(4)设四边形DECF的面积为S,求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在Rt△ABC中,∠C=90°,AC=15,BC=20,求斜边AB上的高CD.

查看答案和解析>>

同步练习册答案