精英家教网 > 初中数学 > 题目详情
(2013•龙岩)如图,AB∥CD,BC与AD相交于点M,N是射线CD上的一点.若∠B=65°,∠MDN=135°,则∠AMB=
70°
70°
分析:根据平行线的性质求出∠BAM,再由三角形的内角和定理可得出∠AMB.
解答:解:∵AB∥CD,
∴∠A+∠MDN=180°,
∴∠A=180°-∠MDN=45°,
在△ABM中,∠AMB=180°-∠A-∠B=70°.
故答案为:70°.
点评:本题考查了平行线的性质,解答本题的关键是掌握:两直线平行同胖内角互补,及三角形的内角和定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•龙岩)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•龙岩)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.
(1)求证:AE=CF;
(2)求证:四边形EBFD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•龙岩)如图①,在矩形纸片ABCD中,AB=
3
+1,AD=
3

(1)如图②,将矩形纸片向上方翻折,使点D恰好落在AB边上的D′处,压平折痕交CD于点E,则折痕AE的长为
6
6

(2)如图③,再将四边形BCED′沿D′E向左翻折,压平后得四边形B′C′ED′,B′C′交AE于点F,则四边形B′FED′的面积为
3
-
1
2
3
-
1
2

(3)如图④,将图②中的△AED′绕点E顺时针旋转α角,得△A′ED″,使得EA′恰好经过顶点B,求弧D′D″的长.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•龙岩)如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.
(1)求菱形ABCD的周长;
(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;
(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案