精英家教网 > 初中数学 > 题目详情
(2006•梅州)如图,直线l的解析式为y=x+4,l与x轴,y轴分别交于点A,B.
(1)求原点O到直线l的距离;
(2)有一个半径为1的⊙C从坐标原点出发,以每秒1个单位长的速度沿y轴正方向运动,设运动时间为t(秒).当⊙C与直线l相切时,求t的值.

【答案】分析:(1)设点O到直线AB的距离为h,在y=x+4中,令x=0,得y=4,得BO=4,令y=0,得x=-3,得AO=3,有三角形的面积公式可求出O到直线AB的距离为h=2.4;
(2)如图,设⊙C与直线l相切于点D,连CD,则CD⊥AB,由于AO⊥BO,∠ABO=∠CBD,所以∠BDC=∠BOA=90°,△ABO∽△CBD,故=,由(1)得AO=3,BO=4,AB=5,故=,BC=,OC=4-=,t=CO=(秒),根据对称性得BC'=BC=,OC'=4+=,∴t=OC′=(秒).故当⊙C与直线l相切时,秒或秒.
解答:解:(1)在y=x+4中,令x=0,得y=4,得BO=4,令y=0,得x=-3,得AO=3,
∴AB==5(2分)
设点O到直线AB的距离为h,
∵S△AOB=AO•BO=AB•h
∴h==2.4;(4分)

(2)如图,设⊙C与直线l相切于点D,连CD,则CD⊥AB,(5分)
∵AO⊥BO,∴∠BDC=∠BOA=90°
∵∠ABO=∠CBD
∴△ABO∽△CBD
=
由(1)得AO=3,BO=4,AB=5
=
∴BC=
∴OC=4-=
∴t=CO=(秒)(8分)
根据对称性得BC'=BC=
∴OC'=4+=
∴t=OC′=(秒)(9分)
∴当⊙C与直线l相切时,秒或秒.(10分)
点评:此题把一次函数与圆的知识相结合,增加了难度,在解答此题时要注意直线与圆相切的两种情况,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2006•梅州)如图,点A在抛物线y=x2上,过点A作与x轴平行的直线交抛物线于点B,延长AO,BO分别与抛物线y=-x2相交于点C,D,连接AD,BC,设点A的横坐标为m,且m>0.
(1)当m=1时,求点A,B,D的坐标;
(2)当m为何值时,四边形ABCD的两条对角线互相垂直;
(3)猜想线段AB与CD之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2010年湖南省长沙市黄花中学中考数学模拟试卷(一)(解析版) 题型:解答题

(2006•梅州)如图,点A在抛物线y=x2上,过点A作与x轴平行的直线交抛物线于点B,延长AO,BO分别与抛物线y=-x2相交于点C,D,连接AD,BC,设点A的横坐标为m,且m>0.
(1)当m=1时,求点A,B,D的坐标;
(2)当m为何值时,四边形ABCD的两条对角线互相垂直;
(3)猜想线段AB与CD之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2006年广东省梅州市中考数学试卷(解析版) 题型:解答题

(2006•梅州)如图,点A在抛物线y=x2上,过点A作与x轴平行的直线交抛物线于点B,延长AO,BO分别与抛物线y=-x2相交于点C,D,连接AD,BC,设点A的横坐标为m,且m>0.
(1)当m=1时,求点A,B,D的坐标;
(2)当m为何值时,四边形ABCD的两条对角线互相垂直;
(3)猜想线段AB与CD之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2006年广东省梅州市中考数学试卷(解析版) 题型:解答题

(2006•梅州)如图是某文具店在2005年卖出供学生使用的甲、乙、丙三种品牌科学记算器个数的条形统计图,试解答下面问题:
(1)求卖出甲、乙、丙三种科学记算器的个数的频率;
(2)根据以上统计结果,请你为该文具店进货提出一条合理化建议.

查看答案和解析>>

同步练习册答案