【题目】如图,反比例函数的图象与一次函数
的图象分别交于M,N两点,已知点M(-2,m).
(1)求反比例函数的表达式;
(2)点P为y轴上的一点,当∠MPN为直角时,直接写出点P的坐标.
【答案】(1);(2)(0,
)或(0,
).
【解析】
试题(1)把M(﹣2,m)代入函数式y=﹣x中,求得m的值,从而求得M的坐标,代入y=
可求出函数解析式;(2)根据M的坐标求得N的坐标,设P(0,m),根据勾股定理列出关于m的方程,解方程即可求得m进而求得P的坐标.
试题解析:(1)∵点M(﹣2,m)在正比例函数y=﹣x的图象上,
∴m=﹣×(﹣2)=1,
∴M(﹣2,1),
∵反比例函数y=的图象经过点M(﹣2,1),
∴k=﹣2×1=﹣2.
∴反比例函数的解析式为
(2)∵正比例函数y=﹣x的图象与反比例函数y=
的图象分别交于M,N两点,点M(﹣2,1),
∴N(2,﹣1),
∵点P为y轴上的一点,
∴设P(0,m),
∵∠MPN为直角,
∴△MPN是直角三角形,
∴(0+2)2+(m﹣1)2+(0﹣2)2+(m+1)2=(2+2)2+(﹣1﹣1)2,
解得m=±
∴点P的坐标为(0,)或(0,﹣
).
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=( )
A. 35° B. 45° C. 50° D. 55°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店以每件20元的价格购进一批商品,如果以每件30元销售,那么半月内可售出400件.根据销售经验,销售单价每提高1元,半月内的销售量相应减少20件.如何提高销售单价,才能在半月内获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,∠ACB=90°,OC=2BO,AC=6,点B的坐标为(1,0),抛物线y=﹣x2+bx+c经过A、B两点.
(1)求点A的坐标;
(2)求抛物线的解析式;
(3)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.
①求点P的坐标;
②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40 cm,这个三角形的面积S(单位:cm2)随x(单位:cm)的变化而变化.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)当x是多少时,这个三角形面积S最大?最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(1,2),B(3,2),连接AB. 若对于平面内一点P,线段AB上都存在点Q,使得PQ≤1,则称点P是线段AB的“临近点”.
(1)在点C(0,2),D(2,),E(4,1)中,线段AB的“临近点”是__________;
(2)若点M(m,n)在直线上,且是线段AB的“临近点”,求m的取值范围;
(3)若直线上存在线段AB的“临近点”,求b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(3分)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(1,2),B(3,2),连接AB. 若对于平面内一点P,线段AB上都存在点Q,使得PQ≤1,则称点P是线段AB的“临近点”.
(1)在点C(0,2),D(2,),E(4,1)中,线段AB的“临近点”是__________;
(2)若点M(m,n)在直线上,且是线段AB的“临近点”,求m的取值范围;
(3)若直线上存在线段AB的“临近点”,求b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com