如图15,在△ABC和△PQD中,AC =" k" BC,DP =" k" DQ,∠C =∠PDQ,D、E分别是AB、AC的中点,点P在直线BC上,连结EQ交PC于点H.猜想线段EH与AC的数量关系,并证明你的猜想.
结论:EH=AC.
证明:取BC边中点F,连接DE、DF.
∵D、E、F分别是边AB、AC、BC的中点.
∴DE∥BC且DE=BC,
DF∥AC且DF=AC,
EC=AC ∴四边形DFCE是平行四边形.
∴∠EDF=∠C.
∵∠C=∠PDQ,∴∠PDQ ="∠EDF" , ∴∠PDF=∠QDE.
又∵AC=kBC,∴DF=kDE.
∵DP="kDQ" ,∴.
∴△PDF∽△QDE.
∴∠DEQ=∠DFP.
又∵DE∥BC,DF∥AC, ∴∠DEQ=∠EHC,∠DFP=∠C.
∴∠C =∠EHC.
∴EH=EC.
∴EH=AC.
选图16.结论:EH=AC.
证明:取BC边中点F,连接DE、DF.
∵D、E、F分别是边AB、AC、BC的中点,
∴DE∥BC且DE=BC, DF∥AC且DF=AC,
EC=AC ,∴四边形DFCE是平行四边形.
∴∠EDF=∠C.
∵∠C=∠PDQ,∴∠PDQ="∠EDF" , ∴∠PDF=∠QDE.
又∵AC=BC, ∴DE=DF,∵PD=QD,∴△PDF≌△QDE.
∴∠DEQ=∠DFP.
∵DE∥BC,DF∥AC, ∴∠DEQ=∠EHC,∠DFP=∠C.
∴∠C =∠EHC
∴EH=EC.
∴EH=AC.
选图17. 结论: EH=AC.
证明:连接AH.
∵D是AB中点,∴DA=DB.
又∵DB=DQ,∴DQ=DP=AD.∴∠DBQ=∠DQB,.
∵∠DBQ+∠DQB+∠DQA+∠DAQ,=180°,∴∠AQB=90°,
∴AH⊥BC.
又∵E是AC中点,∴HE=AC.
解析
科目:初中数学 来源:2011—2012学年广东省湛江市八年级上学期第一次月考数学试卷(带解析) 题型:解答题
如图15,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂直分别是E、F,BE=CF。
【小题1】图中有几对全等三角形?请一一列出。
【小题2】选择一对全等的三角形进行证明
查看答案和解析>>
科目:初中数学 来源:2009年初中毕业升学考试(辽宁大连卷)数学(解析版) 题型:解答题
如图15,在△ABC和△PQD中,AC = k BC,DP = k DQ,∠C =∠PDQ,D、E分别是AB、AC的中点,点P在直线BC上,连结EQ交PC于点H.猜想线段EH与AC的数量关系,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源:2013届广东省湛江市八年级上学期第一次月考数学试卷(解析版) 题型:解答题
如图15,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂直分别是E、F,BE=CF。
1.图中有几对全等三角形?请一一列出。
2.选择一对全等的三角形进行证明
查看答案和解析>>
科目:初中数学 来源: 题型:
如图15,在△ABC中,BC=12,AB=10,sinB=, 动点D从点A出发,以每秒1个单位的速度沿线段AB向点B 运动,DE∥BC,交AC于点E,以DE为边,在点A的异侧作正方形DEFG.设运动时间为t,
(1)t为何值时,正方形DEFG的边GF在BC上;
(2)当GF运动到△ABC外时, EF、DG分别与BC交于点P、Q,是否存在时刻t,使得△CEP与△BDQ的面积之和等于△ABC面积的?
(3)设△ABC与正方形DEFG重叠部分的面积为S,试求S的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com