精英家教网 > 初中数学 > 题目详情
课堂上对关于x的方程的解进行合作探究时,甲同学发现,当m=0时,方程的两根都为1,当m>0时,方程有两个不相等的实数根;乙同学发现,无论m取什么正实数时方程的两根都不可能相等;丙同学发现无论m取什么正实数时方程的两根这和均为定值.
(1)请找一个m的值代入方程使方程的两个根为互不相等的整数,并求这两个根;
(2)请选择乙或丙同学的发现加以判断,并说明理由.
(1)-3(x-1)2=-m,
(x-1)2=
m
3

如取m=27,
m
3
=9,
代入解得x1=4,x2=-2.
(答案不唯一,m为任意完全平方数的3倍);
(2)∵-3(x-1)2+m=0
∴-3x2+6x-3+m=0
∴△=36-4×(-3)×(-3+m)=12m
∵m>0,
∴12m>0,
∴△>0,
∴原方程有两个不相等的实数根,
∴无论m取什么正实数时方程的两根都不可能相等
∴无论m取什么正实数时方程的两根都可表示为:x1=1+
m
3
x2=1-
m
3

∴x1+x2=2,
∴无论m取什么正实数时方程的两根之和均为定值2.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

课堂上对关于x的方程的解进行合作探究时,甲同学发现,当m=0时,方程的两根都为1,当m>0时,方程有两个不相等的实数根;乙同学发现,无论m取什么正实数时方程的两根都不可能相等;丙同学发现无论m取什么正实数时方程的两根这和均为定值.
(1)请找一个m的值代入方程使方程的两个根为互不相等的整数,并求这两个根;
(2)请选择乙或丙同学的发现加以判断,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2012届江苏省高邮市九年级上学期期中考试数学试卷(带解析) 题型:解答题

课堂上对关于x的方程:的解进行合作探究时,甲同学发现,当m=0时,方程的两根都为1,当m>0时,方程有两个不相等的实数根;乙同学发现,无论m取什么正实数时方程的两根都不可能相等;丙同学发现无论m取什么正实数时方程的两根这和均为定值。
(1)请找一个m的值代入方程使方程的两个根为互不相等的整数,并求这两个根;
(2)请选择乙或丙同学的发现加以判断,并说明理由。

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省高邮市九年级上学期期中考试数学试卷(解析版) 题型:解答题

课堂上对关于x的方程:的解进行合作探究时,甲同学发现,当m=0时,方程的两根都为1,当m>0时,方程有两个不相等的实数根;乙同学发现,无论m取什么正实数时方程的两根都不可能相等;丙同学发现无论m取什么正实数时方程的两根这和均为定值。

(1)请找一个m的值代入方程使方程的两个根为互不相等的整数,并求这两个根;

(2)请选择乙或丙同学的发现加以判断,并说明理由。

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省扬州市高邮市九年级(上)期中数学试卷(解析版) 题型:解答题

课堂上对关于x的方程的解进行合作探究时,甲同学发现,当m=0时,方程的两根都为1,当m>0时,方程有两个不相等的实数根;乙同学发现,无论m取什么正实数时方程的两根都不可能相等;丙同学发现无论m取什么正实数时方程的两根这和均为定值.
(1)请找一个m的值代入方程使方程的两个根为互不相等的整数,并求这两个根;
(2)请选择乙或丙同学的发现加以判断,并说明理由.

查看答案和解析>>

同步练习册答案