4£®ÎÒ¹úËγ¯Êýѧ¼ÒÑî»ÔÔÚËûµÄÖø×÷¡¶Ïê½â¾ÅÕÂËã·¨¡·ÖÐÌá³öÈçͼ£¬´Ë±í½ÒʾÁË£¨a+b£©n£¨nΪ·Ç¸ºÕûÊý£©Õ¹¿ªÊ½µÄ¸÷ÏîϵÊýµÄ¹æÂÉ£¬ÀýÈ磺£¨a+b£©0=1£¬ËüÖ»ÓÐÒ»ÏϵÊýΪ1£»£¨a+b£©1=a+b£¬ËüÓÐÁ½ÏϵÊý·Ö±ðΪ1£¬1£»£¨a+b£©2=a2+2ab+b2£¬ËüÓÐÈýÏϵÊý·Ö±ðΪ1£¬2£¬1£»£¨a+b£©3=a3+3a2b+3ab2+b3£¬ËüÓÐËÄÏϵÊý·Ö±ðΪ1£¬3£¬3£¬1£»
¡­
¸ù¾ÝÒÔÉϹæÂÉ£¬£¨a+b£©5Õ¹¿ªÊ½¹²ÓÐÁùÏϵÊý·Ö±ðΪ1£¬5£¬10£¬10£¬5£¬1£®
ÍØÕ¹Ó¦Ó㺣¨a-b£©4=a4-4a3b+6a2b2-4ab3+b4£®

·ÖÎö ¾­¹ý¹Û²ì·¢ÏÖ£¬ÕâЩÊý×Ö×é³ÉµÄÈý½ÇÐÎÊǵÈÑüÈý½ÇÐΣ¬Á½ÑüÉϵÄÊý¶¼ÊÇ1£¬´ÓµÚ3ÐпªÊ¼£¬ÖмäµÄÿһ¸öÊý¶¼µÈÓÚËü¼çÉÏÁ½¸öÊý×ÖÖ®ºÍ£¬Õ¹¿ªÊ½µÄÏîÊý±ÈËüµÄÖ¸Êý¶à1£®¸ù¾ÝÉÏÃæ¹Û²ìµÄ¹æÂɺÜÈÝÒ×½â´ðÎÊÌ⣮

½â´ð ½â£º£¨a+b£©5=a5+5a4b+10a3b2+10a2b3+5ab4+b5£®
£¨a-b£©4=a4-4a3b+6a2b2-4ab3+b4£®
¹Ê´ð°¸Îª£º
1 5 10 10 5 1£¬a4-4a3b+6a2b2-4ab3+b4£®

µãÆÀ ±¾Ì⿼²éÁ˳˷¨¹«Ê½£¬ÕýÈ·¹Û²ìÒÑÖªµÄʽ×ÓÓë¶ÔÓ¦µÄÈý½ÇÐÎÖ®¼äµÄ¹ØϵÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¶ÔÓÚ¶àÏîʽx2-3x+$\frac{19}{4}$£¬ÈÎÒâÈ¡xµÄÖµ£¬¶àÏîʽµÄÖµ×ÜΪÕýÊý£¬ÄãÄÜ˵Ã÷ÆäÖеĵÀÀíÂð£¿ÄãÖªµÀµ±xÈ¡ºÎֵʱ£¬¶àÏîʽµÄÖµ×îСÂð£¿×îСֵÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®£¨1£©ÏÈ»¯¼ò£¨$\frac{x}{x-5}$-$\frac{x}{5-x}$£©¡Â$\frac{2x}{{x}^{2}-25}$£¬È»ºó´Ó²»µÈ×é$\left\{\begin{array}{l}{-x-2¡Ü3}\\{2x£¼12}\end{array}\right.$µÄ½â¼¯ÖУ¬Ñ¡È¡Ò»¸öÄãÈÏΪ·ûºÏÌâÒâµÄxµÄÖµ´úÈëÇóÖµ£®
£¨2£©Èçͼ£¬Ä³½¨Öþ¹¤µØÐèÒª×öÈý½ÇÐÎÖ§¼Ü£¬AB=AC=3Ã×£¬BC=4Ã×£®Ë×»°Ëµ¡°Ö±Ä¾¶¥Ç§½ï¡±£¬ÈôÔö¼Ó¸ÃÈý½ÇÐÎÖ§¼ÜµÄÄÍѹ³Ì¶È£¬Ðè¼Óѹһ¸ùÖÐÖùAD£¨DΪBCÖе㣩£¬ÇóÖÐÖùADµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ1£¬ÒÑÖªA£¨a£¬0£©£¬B£¨0£¬b£©·Ö±ðΪÁ½×ø±êÖáÉϵĵ㣬ÇÒa¡¢bÂú×㣨a-b£©2+$\sqrt{b-6}$=0£¬OC£ºOA=1£º3£®
£¨1£©ÇóA¡¢B¡¢CÈýµãµÄ×ø±ê£»
£¨2£©ÈôD£¨1£¬0£©£¬¹ýµãDµÄÖ±Ïß·Ö±ð½»AB¡¢BCÓÚ E¡¢FÁ½µã£¬Éè E¡¢FÁ½µãµÄºá×ø±ê·Ö±ðΪxE¡¢xF£®µ±BDƽ·Ö¡÷BEFµÄÃæ»ýʱ£¬Çó xE+xF µÄÖµ£»
£¨3£©Èçͼ2£¬ÈôM£¨2£¬4£©£¬µãPÊÇxÖáÉÏAµãÓÒ²àÒ»¶¯µã£¬AH¡ÍPMÓÚµãH£¬ÔÚHM ÉÏÈ¡µãG£¬Ê¹HG=HA£¬Á¬½ÓCG£¬µ±µãPÔÚµãAÓÒ²àÔ˶¯Ê±£¬¡ÏCGMµÄ¶ÈÊýÊÇ·ñ¸Ä±ä£¿Èô²»±ä£¬ÇëÇóÆäÖµ£»Èô¸Ä±ä£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªµãP£¨2m+4£¬m-1£©£¬ÊÔ·Ö±ð¸ù¾ÝÏÂÁÐÌõ¼þ£¬Çó³öµãPµÄ×ø±ê£®
£¨1£©µãPÔÚyÖáÉÏ£»
£¨2£©µãPµÄ×Ý×ø±ê±Èºá×ø±ê´ó3£»
£¨3£©µãPÔÚ¹ýA£¨2£¬-4£©µã£¬ÇÒÓëxÖáƽÐеÄÖ±ÏßÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÈôµãA£¨-2£¬0£©¡¢B£¨-1£¬a£©¡¢C£¨0£¬4£©ÔÚͬһÌõÖ±ÏßÉÏ£¬ÔòaµÄÖµÊÇ£¨¡¡¡¡£©
A£®2B£®1C£®-2D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÈçͼÕý±ÈÀýº¯Êýy=2xµÄͼÏóÓëÒ»´Îº¯Êýy=kx+bµÄͼÏó½»ÓÚµãA£¨m£¬2£©£¬Ò»´Îº¯ÊýµÄͼÏó¾­¹ýµãB£¨-2£¬-1£©£¬ÓëyÖá½»µãΪC£¬ÓëxÖá½»µãΪD£®
£¨1£©ÇóÒ»´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©µãPÊÇxÖáÉÏÒ»µã£¬ÇÒ¡÷ADPµÄÃæ»ýÊÇ¡÷AODÃæ»ýµÄ2±¶£¬Ö±½Óд³öµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬AMƽ·Ö¡ÏBAC£¬½»BCÓÚµãM£¬DΪACÉÏÒ»µã£¬ÑÓ³¤ABµ½µãE£¬Ê¹CD=BE£¬Á¬½ÓDE£¬½»BCÓÚµãF£¬¹ýµãD×÷DH¡ÎAB£¬½»BCÓÚµãH£¬GÊÇCHµÄÖе㣮
£¨1£©ÇóÖ¤£ºDF=EF£®
£¨2£©ÊÔÅжÏGH£¬HF£¬BCÖ®¼äµÄÊýÁ¿¹Øϵ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®·½³Ìx£¨x-2£©=2£¨x-2£©µÄ½âÊÇx1=x2=2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸