精英家教网 > 初中数学 > 题目详情
为预防甲型H1N1流感,某校对教室喷洒药物进行消毒.已知喷洒药物时每立方米空气中的含药量y(毫克)与时间x(分钟)成正比,药物喷洒完后,y与x成反比例(如图所示).现测得10分钟喷洒完后,空气中每立方米的含药量为8毫克.

(1)求喷洒药物时和喷洒完后,y关于x的函数关系式;
(2)若空气中每立方米的含药量低于2毫克学生方可进教室,问消毒开始后至少要经过多少分钟,学生才能回到教室?
(3)如果空气中每立方米的含药量不低于4毫克,且持续时间不低于10分钟时,才能杀灭流感病毒,那么此次消毒是否有效?为什么?
(1)y=(0<x≤10),y=;(2)40分钟;(3)有效

试题分析:(1)分别设出喷洒药物时和喷洒完后的函数解析式,代入点(10,8)即可求解.
(2)由(1)求得的反比例函数解析式,令y<2,求得x的取值范围即可.
(3)将y=4分别代入求得的正比例函数和反比例函数求得的x值作差与10比较即可得出此次消毒是否有效.
解:(1)①∵当0<x≤10时y与x成正比例,
∴可设y=kx.
∵当x=10时,y=8,
∴8=10k.
∴k=
∴y=(0<x≤10).
②∵当x10时y与x成反比例,
∴可设y=
∵当x=10时,y=8,
∴8=
∴k=80.
∴y=(x10);
(2)当y<2时,即<2,解得x40
∴消毒开始后至少要经过40分钟,学生才能回到教室;
(3)将y=4代入y=x中,得x=5;
将y=4代入y=中,得x=20;
∵20-5=1510,
∴本次消毒有效.
点评:函数的应用是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(2013年四川攀枝花12分)如图,在平面直角坐标系中,四边形ABCD是梯形,AB∥CD,点B(10,0),C(7,4).直线l经过A,D两点,且sin∠DAB=.动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于x轴,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.

(1)点A的坐标为   ,直线l的解析式为   
(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围;
(3)试求(2)中当t为何值时,S的值最大,并求出S的最大值;
(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿轴以每秒1个单位长的速度向上移动,且过点P的直线l:也随之移动,设移动时间为t秒.

(1)当t=3时,求l的解析式;
(2)若点M,N位于l的异侧,确定t的取值范围;
(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,直线AB与x轴交于点C,点B的坐标为(﹣6,n),线段OA=5,E为x轴正半轴上一点,且tan∠AOE=

(1)求反比例函数的解析式;
(2)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线y=kx+b经过A(-1,1)和B(-,0)两点,则不等式0<kx+b<-x的解集为_       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x(元),年销售量为y(万件),当35≤x<50时,y与x之间的函数关系式为y=20﹣0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.

(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.
(2)若公司第一年的年销售量利润(年销售利润=年销售收入﹣生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?
(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和﹣投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图1,在矩形ABCD中,动点P从点B出发,沿矩形的边由运动,设点P运动的路程为x,的面积为y,把y看作x的函数,函数的图像如图2所示,则的面积为(    )
A.10B.16C.18D.20

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,一只蚂蚁以均匀的速度沿台阶爬行,那么蚂蚁爬行的高度随时间变化的图象大致是(    )

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明某天上午9时骑自行车离开家,15时回家,他有意描绘离家的距离与时间的变化情况(如图所示)。

(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?
(2)10时和13时,他分别离家多远?
(3)他到达离家最远的地方是什么时间?离家多远?
(4)11时到12时他行驶了多少千米?
(5)他由离家最远的地方返回的平均速度是多少?

查看答案和解析>>

同步练习册答案