精英家教网 > 初中数学 > 题目详情
14.如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是(  )
①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.
A.2B.3C.4D.5

分析 根据六边形ABCDEF的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.

解答 解:∵六边形ABCDEF的内角都相等,
∴∠EFA=∠FED=∠FAB=∠ABC=120°,
∵∠DAB=60°,
∴∠DAF=60°,
∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,
∴AD∥EF∥CB,故②正确,
∴∠FED+∠EDA=180°,
∴∠EDA=∠ADC=60°,
∴∠EDA=∠DAB,
∴AB∥DE,故①正确,
∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,
∴四边形EFAD,四边形BCDA是等腰梯形,
∴AF=DE,AB=CD,
∵AB=DE,
∴AF=CD,故③正确,
连接CF与AD交于点O,连接DF、AC、AE、DB、BE.
∵∠CDA=∠DAF,
∴AF∥CD,AF=CD,
∴四边形AFDC是平行四边形,故④正确,
同法可证四边形AEDB是平行四边形,
∴AD与CF,AD与BE互相平分,
∴OF=OC,OE=OB,OA=OD,
∴六边形ABCDEF既是中心对称图形,故⑤正确,
故选D.

点评 本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.①x2-(x+2)(x-2)
②(2a+b)4÷(2a+b)2
③(4a3b-6a2b2+2ab)÷2ab         
④(-2006)0×2÷$\frac{1}{2}$+(-$\frac{1}{3}$)-2÷2-3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.已知A(4,1),B(5,4),将线段AB绕点A逆时针旋转90°得线段AC,则点C的坐标为(  )
A.(1,2)B.(2,1)C.(7,0)D.(1,3)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,在数轴上有A、B、C、D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A、D两点表示的数分别为-5和6,且AC的中点为E,BD的中点为M,BC之间距点B的距离为$\frac{1}{3}$BC的点N,则该数轴的原点为(  )
A.点EB.点FC.点MD.点N

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.计算3a6÷a2=3a4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.小慧根据学习函数的经验,对函数y=|x-1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完成:
(1)函数y=|x-1|的自变量x的取值范围是任意实数;
(2)列表,找出y与x的几组对应值.
x-10123
yb1012
其中,b=2;
(3)在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;
(4)写出该函数的一条性质:函数的最小值为0(答案不唯一).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.若a<0,则下列不等式不成立的是(  )
A.a+2<a+3B.2a<3aC.2-a<3-aD.$\frac{a}{2}$<$\frac{a}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列根式中,不是最简二次根式的是(  )
A.$\sqrt{10}$B.$\sqrt{2}$C.$\sqrt{12}$D.$\sqrt{22}$

查看答案和解析>>

同步练习册答案