精英家教网 > 初中数学 > 题目详情

如图,在等腰梯形ABCD中,AB∥CD,∠A=60°,AD=DC=CB=2,点P是AD上一动点,点Q是线段AB上一动点且AP=AQ,在等腰梯形ABCD内以PQ为一边作矩形PQMN,点N在CD上.设AQ=x,矩形PQMN的面积为y.
(1)求等腰梯形ABCD的面积;
(2)求y与x之间的函数关系式;
(3)当x为何值时,矩形PQMN是正方形;
(4)矩形PQMN面积最大时,将△PQN沿NQ翻折,点P的对应点为点P’,请判断此时△BMP’的形状.

解:(1)过C作CE∥AD交AB于E,CF⊥AB于F,
∵DC∥AB,CE∥AD,
∴四边形ADCE是平行四边形,
∴AE=CD=2,AD=CE=BC,∠A=∠CEB=60°,
∴△CEB是等边三角形,
∴BE=CE=2,
∴AB=4,BF=EF=1,
由勾股定理得:CF=



(2)如图(2):
由题知,AP=AQ=x,∠A=60°,△APQ为等边三角形,
则PQ=x,
∵∠NPQ=90°,∠APQ=60°,
∴∠DPN=30°,
又∠D=120°,
∴∠DNP=30°,
则DP=DN=2-x,
作DE⊥PN于点E,
在Rt△DPE中,DP=2-x,∠DPE=30°,

∵DP=DN,DE⊥PN,
则PN=

∴y与x的函数关系式是y=-x2+2x.

(3)由题意得,PQ=PN,


∴当x=3-时,矩形PQMN是正方形.

(4)
当x=1时,
∠AQP=60°,
∠PQN=60°,
∠NQB=60°,
∴P′在AB上,
又QP=QP′=1,
∴AP′=2,
MP′=P′Q=1,BP′=2,
过M作MH⊥AB于H,连接QN,
∵MN=2,MQ=
∴由勾股定理得:QN=2,∠NQM=30°,
∴∠MQB=60°-30°=30°,
∴MH=,QH=
∴BH=4-1-=
由勾股定理得:BM=
在Rt△BMQ中,
∴△BMP′为直角三角形.
分析:(1)过C作CE∥AD交AB于E,CF⊥AB于F,根据平行四边形的性质和判定求出AE、CE,得出等边三角形CEB,求出高SF的长即可;
(2)根据等边三角形的性质和判定求出PQ=x,DP=2-x,作DE⊥PN于点E,求出∠DPE=30°,求出DE,根据勾股定理求出PN,根据面积公式求出即可;
(3)根据正方形的性质得出PQ=PN,代入求出x即可;
(4)求出x值,根据x的值求出∠AQP=∠PDN=∠BQN=60°,过M作MH⊥AB于H,连接QN,求出MH、BM、P′M、BP′的值,根据勾股定理的逆定理求出即可.
点评:本题综合考查了等腰梯形的性质,矩形的性质,勾股定理的逆定理,勾股定理,二次函数的最值,翻折变换,正方形的判定等知识点的应用,此题是一道难度较大的题目,综合性比较强,对学生提出了较高的要求,通过做此题培养了学生的分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止).设P、Q同时出发并运动了t秒.
(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;
(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存精英家教网在,求出这样的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,在等腰梯形ABCD中,AD∥BC,AB=DC,E为AD的中点,求证:BE=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=3EA,CF=3FD.
求证:∠BEC=∠CFB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是(  )

查看答案和解析>>

科目:初中数学 来源:中考必备’04全国中考试题集锦·数学 题型:044

如图,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,点P从A点出发沿AD边向点D移动,点Q自A点出发沿A→B→C的路线移动,且PQ∥DC,若AP=x,梯形位于线段PQ右侧部分的面积为S.

  

(1)分别求出当点Q位于AB、BC上时,S与x之间的函数关系式,并写出自变量x的取值范围;

(2)当线段PQ将梯形AB∥⊥CD分成面积相等的两部分时,x的值是多少?

(3)当(2)的条件下,设线段PQ与梯形AB∥⊥CD的中位线EF交于O点,那么OE与OF的长度有什么关系?借助备用图说明理由;并进一步探究:对任何一个梯形,当一直线l经过梯形中位线的中点并满足什么条件时,一定能平分梯形的面积?(只要求说出条件,不需要证明)

查看答案和解析>>

同步练习册答案