精英家教网 > 初中数学 > 题目详情

【题目】如图1,已知二次函数y=x2+bx+c的图象与x 轴交于A(﹣1,0)、B(3,0)两点,与y 轴交于点C,顶点为D,对称轴为直线l.

(1)求该二次函数的表达式;
(2)若点E 是对称轴l 右侧抛物线上一点,且SADE=2SAOC , 求点E 的坐标;
(3)如图2,连接DC 并延长交x 轴于点F,设P 为线段BF 上一动点(不与B、F 重合),过点P 作PQ∥BD 交直线BC 于点Q,将直线PQ 绕点P 沿顺时针方向旋转45°后,所得的直线交DF 于点R,连接QR.请直接写出当△PQR 与△PFR 相似时点P 的坐标.

【答案】
(1)

解:将点A和点B的坐标代入抛物线的解析式得 ,解得

∴二次函数的表达式为y=x2﹣2x﹣3;


(2)

解:设E(m,m2﹣2m﹣3),过点E作EM∥x轴,交AD于点M,(如图1)

由y=x2﹣2x﹣3=( x﹣1)2﹣4得顶点D(1,﹣4),C(0,﹣3),

∴SADE=2SAOC=3,

∵A(﹣1,0)、D(1,﹣4),

∴直线AD为:y=﹣2x﹣2,

∵E(m,m2﹣2m﹣3),

∴M( ,m2﹣2m﹣3),

∴EM=

∴SADE ×4×EM=2EM=m2﹣1=3,

解得m=±2(其中m=﹣2舍去),

∴E(2﹣3);


(3)

解:∵C(0,﹣3),D(1,﹣4),

∴直线CD的解析式为:y=﹣x﹣3.

当y=0时,x=﹣3,

故F(0,﹣3),

∴OF=OC=3,

∴∠OFC=45°,即∠PFR=45°.

∵PQ∥BD,

∴∠FPQ≠90°,

∴∠FPR≠45°,

∴当△PQR 与△PFR 相似时:

△PQR∽△FRP,则

点P的坐标是:P1 ,0)、P2(0,0).


【解析】(1)由A、B两点的坐标,利用待定系数法可求得二次函数的表达式;(2)设E(m,m2﹣2m﹣3),过点E作EM∥x轴,交AD于点M,由条件可得△AOC的面积,从而可求得△ADE的面积,利用待定系数法可求得直线AD的解析式,则可用m表示出EM的长,从而可用m表示出△ADE的面积,从而可得到关于m的方程,可求得m的值;(3)由C、D坐标可求得直线CD的解析式,从而可求得F点坐标,可求得OF=OC,可得∠RFP=∠RPQ=45°,由△PQR 与△PFR 相似得到:△PQR∽△FRP 或△PQR∽△FPR,结合相似三角形的对应边成比例得到点P的坐标.
【考点精析】通过灵活运用确定一次函数的表达式和三角形的面积,掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;三角形的面积=1/2×底×高即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知直线l及其两侧两点A、B.

(1)在直线l上求一点O,使到A、B两点距离之和最短;

(2)在直线l上求一点P,使PA=PB;

(3)在直线l上求一点Q,使l平分AQB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用适当的方法解下列方程:
(1)x2+2x﹣9999=0
(2)2x2﹣2x﹣1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则选项图象能大致反映yx的函数关系的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD 中,E、F 分别为BC、AD 上的点,将四边形ABEF 沿直线EF 折叠后,点B 落在CD 边上的点G 处,点A 的对应点为点H.再将折叠后的图形展开,连接BF、GF、BG,若BF⊥GF.
(1)求证:△ABF≌△DFG;
(2)已知AB=3,AD=5,求tan∠CBG 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数,它的图象与轴交于点,与轴交于点

的坐标为________,点的坐标为________;

画出此函数图象;

画出该函数图象向下平移个单位长度后得到的图象;

写出一次函数图象向下平移个单位长度后所得图象对应的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知BD,CE是△ABC的两条高,直线BD,CE相交于点H.

(1)若∠BAC=100°,求∠DHE的度数;

(2)若△ABC中∠BAC=50°,直接写出∠DHE的度数是____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,P是AD上一动点,O为BD的中点,连接PO并延长,交BC于点Q.

(1) 求证:四边形PBQD是平行四边形

(2) 若AD=6cm,AB=4cm, 点P从点A出发,以1cm/s的速度向点D运动(不与点D重合),设点P运动时间为t s , 请用含t的代数式表示PD的长,并求出当t为何值时,四边形PBQD是菱形。并求出此时菱形的周长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”、“日常学习”、“习惯养成”、“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.
(1)补全条形统计图.
(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?
(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?

查看答案和解析>>

同步练习册答案