【题目】如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.
(1)求证:四边形BEDF是平行四边形;
(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.
【答案】(1)证明见解析;(2)当∠ABE=30°时,四边形BEDF是菱形.
【解析】试题分析:(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证;
(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.
试题解析:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;
(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.
科目:初中数学 来源: 题型:
【题目】某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:
时间 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
新加入人数(人) | 153 | 550 | 653 | b | 725 |
累计总人数(人) | 3353 | 3903 | a | 5156 | 5881 |
(1)表格中a= ,b= ;
(2)请把下面的条形统计图补充完整;
(3)根据以上信息,下列说法正确的是 (只要填写正确说法前的序号).
①在活动之前,该网站已有3200人加入;
②在活动期间,每天新加入人数逐天递增;
③在活动期间,该网站新加入的总人数为2528人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【感受联系】在初二的数学学习中,我们感受过等腰三角形与直角三角形的密切联系.等腰三角形作底边上的高线可转化为直角三角形,直角三角形沿直角边翻折可得到等腰三角形等等.
(1)【探究发现】某同学运用这一联系,发现了“30°角所对的直角边等于斜边的一半”.并给出了如下的部分探究过程,请你补充完整证明过程
已知:如图,
在 △ 中, °, °.
求证: .
(2)【灵活运用】该同学家有一张折叠方桌如图①所示,方桌的主视图如图②.经测得 , ,将桌子放平,两条桌腿叉开的角度 .
求:桌面与地面的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.
(1)求证:BE=CE;
(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图① ,菱形中,,动点从点出发,沿折线运动到点停止,动点从点出发,沿线段运动到点停止,它们运动的速度相同.设点出发时,的面积为 .已知与之间的函数关系.如图 ②所示,其中为线段,曲线为抛物线的一部分,请根据图中的信息,解答下列问题:
(1)当时,的面积 (填“变”或“不变”);
(2)分别求出线段,曲线所对应的函数表达式;
(3)当为何值时,的面积是?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,四边形的对角线相交于点,,,,.
(1)填空:与的数量关系为 ;
(2)求的值;
(3)将沿翻折,得到(如图2),连接,与相交于点.若,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发向乙地. 如图,线段OA表示货车离甲地距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地距离y(km)与时间x(h)之间的函数关系.请根据图象,解答下列问题:
(1)线段CD表示轿车在途中停留了h;
(2)货车的平均速度是km/h;
(3)求线段DE对应的函数解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com