精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD内接于⊙O,E为DC的中点,直线BE交⊙O于点F,如果⊙O的半径为数学公式,则O点到BE的距离OM=________.


分析:作OM⊥BE于M,连接OE,BD,根据90°的圆周角所对的弦是直径,得BD是直径.根据勾股定理及相交弦定理求得BE,EF的值,从而得到BF的值,利用垂径定理求得MF,ME,最后根据勾股定理即可求得OM的值.
解答:解:作OM⊥BE于M,连接OE,BD,
∵∠DCB=90°,
∴BD是直径,
∵OE=DE=1,
∴BE==
∵EF==
∴BF=
∴MF=,ME=
∴OM==
点评:此题综合运用了勾股定理、相交弦定理、垂径定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案