【题目】如图,已知反比例函数的图象与反比例函数的图象关于轴对称,,是函数图象上的两点,连接,点是函数图象上的一点,连接,.
(1)求,的值;
(2)求所在直线的表达式;
(3)求的面积.
【答案】(1)m=1,n=2.(2)y=-x+5;(3)
【解析】分析: (1)先把A点坐标代入 得k1=4,则反比例函数解析式为y=(x>0),再利用反比例解析式确定B点坐标即可求出m的值,根据两个反比例函数的图象关于轴对称,可得k=-4,又由点是函数图象上的一点即可求出n的值;
(2)根据A,B两点坐标利用待定系数法即可求出一次函数解析式.
(3)自A,B,C三点分别向x轴作垂线,垂足分别为A′,B′,C′,然后根据三角形面积公式和进行计算.
详解:
(1)由A(1,4),B(4,m)是函数(x>0)图象上的两点,
∴4=,k1=4,
∴(x>0)
∴m=.
∵(x<0)的图象和(x>0)的图象关于y轴对称,
∴点A(1,4)关于y轴的对称点A1(-1,4)在(x<0)的图象上,
∴4=,k2=-4,
∴
由点C(-2,n)是函数图象上的一点,
∴n=2.
(2设AB所在直线的表达式为y=kx+b,
将A(1,4),B(4,1)分别代入y=kx+b,得
解这个二元一次方程组,得.
∴AB所在直线表达式为:y=-x+5
(3)自A,B,C三点分别向x轴作垂线,垂足分别为A′,B′,C′,
CC′=2,AA′=4,BB′=1,C′A′=3,A′B′=3,C′B′=6.
∴′
=×(2+4) ×3+×(1+4) ×3-×(2+1) ×6=
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)AD上任意一点到点C、D的距离相等;(2)AD上任意一点到AB、AC的距离相等;(3)AD⊥BC且BD=CD;(4)∠BDE=∠CDF,其中正确的个数是( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料并解决后面的问题
材料:对数的创始人是苏格兰数学家纳皮尔(J.Npler,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707--1783)才发现指数与对数之间的联系,我们知道,n个相同的因数a相乘aa…,a记为an,如23=8,此时,3叫做以2为底8的对数,记为log28,即log28=3一般地若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab,即logab=n.如34=81,则4叫做以3为底81的对数,记为log381,即log381=4.
(1)计算下列各对数的值:log24=______,log216=______,log264=______;
(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是______;
(3)拓展延伸:下面这个一股性的结论成立吗?我们来证明logaM+logaN=logaMN(a>0且a≠1,M>0,N>0)
证明:设logaM=m,logaN=n,
由对数的定义得:am=M,an=N,
∴aman=am+n=MN,
∴logaMN=m+n,
又∵logaM=m,logaN=n,
∴logaM+logaN=logaMN(a>0且a≠1,M>0,N>0);
(4)仿照(3)的证明,你能证明下面的一般性结论吗?logaM-logaN=loga(a>0且a≠1,M>0,N>0)
(5)计算:log34+log39-log312的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
(1)第一批饮料进货单价多少元?
(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与轴分别交于原点和点,与对称轴交于点.矩形的边在轴正半轴上,且,边,与抛物线分别交于点,.当矩形沿轴正方向平移,点,位于对称轴的同侧时,连接,此时,四边形的面积记为;点,位于对称轴的两侧时,连接,,此时五边形的面积记为.将点与点重合的位置作为矩形平移的起点,设矩形平移的长度为.
(1)求出这条抛物线的表达式;
(2)当时,求的值;
(3)当矩形沿着轴的正方向平移时,求关于的函数表达式,并求出为何值时,有最大值,最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点在数轴上分别表示有理数,两点之间的距离表示为,在数轴上A、B两点之间的距离.
利用数形结合思想回答下列问题:
(1)数轴上表示-2和1的两点之间的距离是______.
(2)数轴上表示和-1的两点之间的距离表示为______.
(3)在数轴上点表示数,点表示数,点表示数,且满足,若是数轴上任意一点,点表示的数是,当时,的值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将正整数1至2018按一定规律排列如下表:
平移表中带阴影的方框,方框中三个数的和可能是( )
A. 2019 B. 2018 C. 2016 D. 2013
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com