精英家教网 > 初中数学 > 题目详情
(2008•株洲)如图,在△ABC中,∠C=90°,点D、E分别在AC、AB上,BD平分∠ABC,DE⊥AB,AE=6,cosA=
求(1)DE、CD的长;(2)tan∠DBC的值.

【答案】分析:(1)由DE⊥AB,AE=6,cosA=,可求出AD的长,根据勾股定理可求出DE的长,由角平分线的性质可得DC=DE=8;
(2)由AD=10,DC=8,得AC=AD+DC=18.由∠A=∠A,∠AED=∠ACB,可知△ADE∽△ABC,由相似三角形边长的比可求出BC的长,根据三角函数的定义可求出tan∠DBC=
解答:解:(1)在Rt△ADE中,由AE=6,cosA==,得:AD=10,(1分)
由勾股定理得DE===8(2分)
∵BD平分∠ABC,DE⊥AB,∠C=90°,角平分线性质得:DC=DE=8.(4分)

(2)方法一:由(1)AD=10,DC=8,得:AC=AD+DC=18.
在△ADE与△ABC,∠A=∠A,∠AED=∠ACB,
∴△ADE∽△ABC得:=,即=,BC=24,(5分)
得:tan∠DBC===(6分)
方法二:由(1)得AC=18,又cosA==,得AB=30,
由勾股定理得BC=24(5分)得:tan∠DBC=.(6分)
点评:考查综合应用解直角三角形、直角三角形性质、相似三角形的性质、三角函数值的定义,进行逻辑推理能力和运算能力.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《三角形》(09)(解析版) 题型:解答题

(2008•株洲)如图1,在平面直角坐标系中,点A的坐标为(1,-2),点B的坐标为(3,-1),二次函数y=-x2的图象为l1
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的抛物线的一个解析式(任写一个即可);
(2)平移抛物线l1,使平移后的抛物线过A、B两点,记抛物线为l2,如图2,求抛物线l2的函数解析式及顶点C的坐标;
(3)设P为y轴上一点,且S△ABC=S△ABP,求点P的坐标;
(4)请在图2上用尺规作图的方式探究抛物线l2上是否存在点Q,使△QAB为等腰三角形?若存在,请判断点Q共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(03)(解析版) 题型:解答题

(2008•株洲)如图1,在平面直角坐标系中,点A的坐标为(1,-2),点B的坐标为(3,-1),二次函数y=-x2的图象为l1
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的抛物线的一个解析式(任写一个即可);
(2)平移抛物线l1,使平移后的抛物线过A、B两点,记抛物线为l2,如图2,求抛物线l2的函数解析式及顶点C的坐标;
(3)设P为y轴上一点,且S△ABC=S△ABP,求点P的坐标;
(4)请在图2上用尺规作图的方式探究抛物线l2上是否存在点Q,使△QAB为等腰三角形?若存在,请判断点Q共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年湖南省株洲市中考数学试卷(解析版) 题型:解答题

(2008•株洲)如图1,在平面直角坐标系中,点A的坐标为(1,-2),点B的坐标为(3,-1),二次函数y=-x2的图象为l1
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的抛物线的一个解析式(任写一个即可);
(2)平移抛物线l1,使平移后的抛物线过A、B两点,记抛物线为l2,如图2,求抛物线l2的函数解析式及顶点C的坐标;
(3)设P为y轴上一点,且S△ABC=S△ABP,求点P的坐标;
(4)请在图2上用尺规作图的方式探究抛物线l2上是否存在点Q,使△QAB为等腰三角形?若存在,请判断点Q共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年湖南省株洲市中考数学试卷(解析版) 题型:填空题

(2008•株洲)如图中每个阴影部分是以多边形各顶点为圆心,1为半径的扇形,并且所有多边形的每条边长都>2,则第n个多边形中,所有扇形面积之和是    .(结果保留π)

查看答案和解析>>

同步练习册答案