17.在函数①y=$\sqrt{2}$x2+1,②y=2x2+x(1-2x);③y=x2(x2+x)-2;④y=$\frac{1}{{x}^{2}}$+x2;⑤y=x(x-1);⑥y=$\frac{{x}^{2}+{x}^{4}}{{x}^{2}+1}$中,是二次函数的是①⑤.
分析 根据二次函数的定义进行判定.
解答 解:在函数①y=$\sqrt{2}$x2+1,②y=2x2+x(1-2x);③y=x2(x2+x)-2;④y=$\frac{1}{{x}^{2}}$+x2;⑤y=x(x-1);⑥y=$\frac{{x}^{2}+{x}^{4}}{{x}^{2}+1}$中,是二次函数有①y=$\sqrt{2}$x2+1;⑤y=x(x-1).
故答案为①⑤.
点评 本题考查了二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量.