精英家教网 > 初中数学 > 题目详情
直线y=kx+b过点A(-1,5)且平行于直线y=-x.
(1)求这条直线的解析式;
(2)若点B(m,-5)在这条直线上,O为坐标原点,求m的值;
(3)求△AOB的面积.

(1)由题意得:y=-x+b
又过A(-1,5),
∴5=1+b,
∴b=4,
∴y=-x+4;

(2)∵B(m,-5)在直线y=-x+4上,
∴-5=-m+4,
∴m=9;

(3)如图,画出直线AB,连接OA、OB,
设直线与y轴交点为C,则C(0,4)
∴S△AOB=S△AOC+S△BOC=
1
2
•OC•|xA|+
1
2
OC•|xB|
=
1
2
×4×1+
1
2
×4×9
=20.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某学校的复印任务原来由甲复印社承接,其收费y(元)与复印页数x(页)的关系如下表:
x(页)1002004001000
y(元)4080160400
(1)若y与x满足初中学过的某一函数关系,求函数的解析式;
(2)现在乙复印社表示:若学校先按每月付给200元的承包费,则可按每页0.15元收费.则乙复印社每月收费y(元)与复印页数x(页)的函数关系为______;
(3)在给出的坐标系内画出(1)、(2)中的函数图象,并回答每月复印页数在1200左右应选择哪个复印社?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知一次函数y=-
1
2
x+b的图象经过点A(2,3),AB⊥x轴,垂足为B,连接OA.
(1)求此一次函数的解析式;
(2)设点P为直线y=-
1
2
x+b上的一点,且在第一象限内,经过P作x轴的垂线,垂足为Q.若S△POQ=
5
4
S△AOB,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数o=k着+b(k≠七)的图象经过A(图,-w)和B(-2,4);
(w)求这个函数的解析式;
(2)求该函数图象与o轴的交点C和与着轴的交点D的坐标;
(图)求△OCD的面积(O为坐标原点).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,直线y=-x+2与x轴、y轴分别相交于点C、D,一个含45°角的直角三角板的锐角顶点A在线段CD上滑动,滑动过程中三角板的斜边始终经过坐标原点,∠A的另一边与x轴的正半轴相交于点B.
(1)试探索△AOB能否为等腰三角形?若能,请求出点B的坐标;若不能,请说明理由.
(2)如图2,若将题中“直线y=-x+2”、“∠A的另一边与x轴的正半轴相交于点B”分别改为:“直线y=-x+t(t>0)”、“∠A的另一边与x轴的负半轴相交于点B”(如图2),其他条件保持不变,请探索(1)中的问题(只考虑点A在线段CD的延长线上且不包括点D时的情况)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线l的解析式为y=-x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)
(1)求A、B两点的坐标;
(2)用含t的代数式表示△MON的面积S1
(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2
①当2<t≤4时,试探究S2与之间的函数关系;
②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的
5
16

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

探究与应用:在学习几何时,我们可以通过分离和构造基本图形,将几何“模块”化.例如在相似三角形中,K字形是非常重要的基本图形,可以建立如下的“模块”(如图①):
(1)请就图①证明上述“模块”的合理性.已知:∠A=∠D=∠BCE=90°,求证:△ABC△DCE;
(2)请直接利用上述“模块”的结论解决下面两个问题:
①如图②,已知点A(-2,1),点B在直线y=-2x+3上运动,若∠AOB=90°,求此时点B的坐标;
②如图③,过点A(-2,1)作x轴与y轴的平行线,交直线y=-2x+3于点C、D,求点A关于直线CD的对称点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是某汽车行驶的路程S(千米)与时间t(分)的函数关系图.观察图中所提供的信息,解答下列问题:
(1)汽车在前9分钟内的平均速度是______千米/分;
(2)当16≤t≤30时,求S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=
3
4
x,点A的坐标是(4,0),点D为x轴上位于点A右边的某一点,点B为直线y=
3
4
x上的一点,以点A、B、D为顶点作正方形.
(1)若图①仅看作符合条件的一种情况,求出所有符合条件的点D的坐标;
(2)在图①中,若点P以每秒1个单位长度的速度沿直线y=
3
4
x从点O移动到点B,与此同时点Q以相同的速度从点A出发沿着折线A-B-C移动,当点P到达点B时两点停止运动.设点P运动时间为t,试探究:在移动过程中,△PAQ的面积关于t的函数关系式,并求最大值是多少?

查看答案和解析>>

同步练习册答案