精英家教网 > 初中数学 > 题目详情
(2012•深圳)如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为(  )
分析:三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.
解答:解:根据三角形的内角和定理得:
四边形除去∠1,∠2后的两角的度数为180°-60°=120°,
则根据四边形的内角和定理得:
∠1+∠2=360°-120°=240°.
故选C.
点评:主要考查了三角形及四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•深圳)如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内
OB
上一点,∠BMO=120°,则⊙C的半径长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•深圳)如图,双曲线y=
kx
(k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线.已知点P坐标为(1,3),则图中阴影部分的面积为
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•深圳)如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,则另一直角边BC的长为
7
7

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•深圳)如图,已知△ABC的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6).
(1)求经过A、B、C三点的抛物线解析式;
(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;
(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F为顶点的三角形与△ABC相似吗?

查看答案和解析>>

同步练习册答案