精英家教网 > 初中数学 > 题目详情
例1     如图所示,填空。

1AD的角平分线,则                  

2AE的中线,则                  

3AF的高,则            

 

答案:
解析:

1

2

3

 


提示:

本题体现了定义的应用,既可正用,也可逆用,体现了条件之间的转化。

 


练习册系列答案
相关习题

科目:初中数学 来源:初中数学 三点一测丛书 八年级数学 下 (江苏版课标本) 江苏版 题型:013

反比例函数中系数k的几何意义

  反比例函数y=(k≠0)任取一点M(a,b),过M作MA⊥x轴,MB⊥y轴,所得矩形OAMB的面积为S=MA·MB=|b|·|a|=|ab|.又因为b=,故ab=k,所以S=|k|(如图(1)).

  这就是说,过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.这就是k的几何意义,会给解题带来方便.现举例如下:

  例1:如(2)图,已知点P1(x1,y1)和P2(x2,y2)都在反比例函数y=(k<0)的图像上,试比较矩形P1AOB与矩形P2COD的面积大小.

  解答:=|k|

  =|k|

  故

  例2:如图(3),在y=(x>0)的图像上有三点A、B、C,经过三点分别向x轴引垂线,交x轴于A1、B1、C1三点,连结OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积分别为S1、S2、S3,则有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=

  |k|=

  |k|=

  S1=S2=S3,故选A.

  例3:一个反比例函数在第三象限的图像如图(4)所示,若A是图像任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,那么这个反比例函数的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲线在第三象限

  ∴k>0∴k=6

  ∴所以反比例函数的解析式为y=

  根据是述意义,请你解答下题:

  如图(5),过反比例函数y=(x>0)的图像上任意两点A、B分别作轴和垂线,垂足分别为C、D,连结OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小关系不能确定

查看答案和解析>>

科目:初中数学 来源:初中数学 三点一测丛书 八年级数学 下 (江苏版课标本) 江苏版 题型:044

阅读下面的短文,并解答下列问题.

相似形开阔了人类的视野

  数学知识最初都产生于实践的需要,古人在测量土地面积和建筑物的高度时,就用到了相似形的知识.比如,几何学之父,古希腊人欧几里得曾经这样间接地测量金字塔的高度:他等到自己在阳光下的身影长与他的身高正好相等的时刻,测量了金字塔的塔影的长度.“这个,各位先生!”他宣布,“恰恰就是大金字塔的高度.”

  如图(1),设A为塔高,B为身高,由B∥A,当身影长与身高相等时,P=B,所以AP,即塔高等于塔影的长度.

  光学望远镜、照相机的成像原理都用到相似形的知识,以简单的针孔成像为例,在方盒一侧壁开有极细的针孔,蜡烛发出的光线穿过针孔在方盒另一侧壁上形成一个倒立的像.蜡烛距方盒越远,所成像越小,像长和蜡烛长之间的比可以表示为.如图(2)

  人眼观察远处的物体显得较小,其中的道理类似于以上针孔成像原理,只是人的眼球相当于照相机的光学镜头,成像原理稍复杂.

  无数事实说明,相似形的知识使人类大大拓宽了视野,扩展了人类观察和认识事物的能力.

请你再举例说明相似形在实际生活、科学领域等方面的应用.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读材料,解答问题.
例  用图象法解一元二次不等式:.x2-2x-3>0
解:设y=x2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.
又∵当y=0时,x2-2x-3=0,解得x1=-1,x2=3.
∴由此得抛物线y=x2-2x-3的大致图象如图所示.
观察函数图象可知:当x<-1或x>3时,y>0.
∴x2-2x-3>0的解集是:x<-1或x>3.
(1)观察图象,直接写出一元二次不等式:x2-2x-3>0的解集是______;
(2)仿照上例,用图象法解一元二次不等式:x2-1>0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,图形(1),(2),(3),(4)分别由两个相同的正三角形,正方形,正五边形,正六边形组成.本题中我们探索各图形顶点,边数,区域三者之间的关系.(例我们规定如图(2)的顶点数为16;边数为24,像A1A,AH为边,AH不能再算边,边与边不能重叠;区域数为9,它们由八个小三角形区域和中间区域ABCDEFGH组成,它们相互独立.)
(1)每个图形中各有多少个顶点?多少条边?多少个区域?请将结果填入表格中.
(2)根据(1)中的结论,写出a,b,c三者之间的关系表达式.
图序顶点个数(a) 边数(b) 区域(c)
(1)
(2)      16    24    9
(3)
(4)

查看答案和解析>>

同步练习册答案