【题目】如图,在平面直角坐标系中,直线l:y=﹣x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.
(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.
(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
【答案】(1)AP+PQ的最小值为4;(2)存在,M点坐标为(﹣12,﹣4)或(12,8).
【解析】
(1)由直线解析式易求AB两点坐标,利用等腰直角△ABC构造K字形全等易得OE=CE=4,C点坐标为(4,4)DB=∠CEB=90,可知B、C、D、E四点共圆,由等腰直角△ABC可知∠CBD=45,同弧所对圆周角相等可知∠CED=45,所以∠OEF=45,CE、OE是关于EF对称,作PH⊥CE于H,作PG⊥OE于Q,AK⊥EC于K.把AP+PQ的最小值问题转化为垂线段最短解决问题.
(2)由直线l与直线AC成45可知∠AMN=45,由直线AC解析式可设M点坐标为(x,),N在y轴上,可设N(0,y)构造K字形全等即可求出M点坐标.
解:(1)过A点作AK⊥CE,
在等腰直角△ABC中,∠ACB=90,AC=BC,
∵CE⊥x轴,
∴∠ACK+∠ECB=90,∠ECB+∠CBE=90,
∴∠ACK=∠CBE
在△AKC和△CEB中,
,
△AKC≌△CEB(AAS)
∴AK=CE,CK=BE,
∵四边形AOEK是矩形,
∴AO=EK=BE,
由直线l:y=﹣x+2与x轴交于点B,与y轴交于点A,可知A 点坐标为(0,2),B(6,0)
∴E点坐标为(4,0),C点坐标为(4,4),
∵∠CDB=∠CEB=90,
∴B、C、D、E四点共圆,
∵,∠CBA=45,
∴∠CED=45,
∴FE平分∠CEO,
过P点作PH⊥CE于H,作PG⊥OE于G,过A点作AK⊥EC于K.
∴PH=PQ,
∵PA+PQ=PA+PH≥AK=OE,
∴OE=4,
∴AP+PQ≥4,
∴AP+PQ的最小值为4.
(2)∵A 点坐标为(0,2),C点坐标为(4,4),
设直线AC解析式为:y=kx+b
把(0,2),(4,4)代入得
解得
∴直线AC解析式为:y=,
设M点坐标为(x,),N坐标为(0,y).
∵MN∥AB,∠CAB=45,
∴∠CMN=45,
△CMN为等腰直角三角形有两种情况:
Ⅰ.如解图2﹣1,∠MNC=90,MN=CN.
同(1)理过N点构造利用等腰直角△MNC构造K字形全等,同(1)理得:SN=CR,MS=NR.
∴,解得:,
∴M点坐标为(﹣12,﹣4)
Ⅱ.如解图2﹣2,∠MNC=90,MN=CN.
过C点构造利用等腰直角△MNC构造K字形全等,同(1)得:MS=CF,CS=FN.
∴,解得:,
∴M点坐标为(12,8)
综上所述:使得△CMN为等腰直角三角形得M点坐标为(﹣12,﹣4)或(12,8).
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).
(1)在如图所示的网格平面内作出平面直角坐标系,标注原点以及x轴、y轴;
(2)作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;
(3)点P是x轴上的动点,在图中找出使△A′BP周长最小时的点P,直接写出点P的坐标是: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C、D,若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从﹣3、﹣2、﹣1、1、2、3这六个数中,随机抽取一个数记作a,使关于x的分式方程有整数解,且使直线y=3x+8a﹣17不经过第二象限,则符合条件的所有a的和是( )
A.﹣4B.﹣1C.0D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“赏中华诗词,寻文化基因,品生活之美”某校举办了首届“中国诗词比赛”,全校师生同时默写50首古诗,每正确默写出一首古诗得2分,结果有600名学生进入决赛,从进入决赛的600名学生中随机抽取40名学生进行成绩分析,根据比赛成绩绘制出部分频数分布表和部分频数分布直方图如下列图表
组别 | 成绩x(分) | 频数(人数) |
第1组 | 60≤x<68 | 4 |
第2组 | 68≤x<76 | 8 |
第3组 | 76≤x<84 | 12 |
第4组 | 84≤x<92 | a |
第5组 | 92≤x<100 | 10 |
第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82请结合以上数据信息完成下列各题:
(1)填空:a= 所抽取的40名学生比赛成绩的中位数是
(2)请将频数分布直方图补充完整
(3)若比赛成绩不低于84分的为优秀,估计进入决赛的学生中有多少名学生的比赛成绩为优秀?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD=.
(1)求证:△ABP∽△PCD;
(2)求△ABC的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6cm,∠ABC=30°,动点P从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒cm的速度向点B匀速运动,运动时间为t秒(0≤t≤6),连接PQ,以PQ为直径作⊙O.
(1)当t=1时,求△BPQ的面积;
(2)设⊙O的面积为y,求y与t的函数解析式;
(3)若⊙O与Rt△ABC的一条边相切,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点A(1,﹣),点B(﹣2,n)在抛物线y=ax2(a≠0)上.
(1)求a的值与点B的坐标;
(2)将抛物线y=ax2(a≠0)平移,记平移后点A的对应点为A′,点B的对应点为B',若四边形ABB′A′为正方形,求平移后的抛物线的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com