精英家教网 > 初中数学 > 题目详情

如图,一次函数 的图像与 轴、轴分别相交于点 、.二次函数的图像与 轴的正半轴相交于点,与这个一次函数的图像相交于点

(1) 求点的坐标;

(2)如果,求这个二次函数的解析式.

 

【答案】

(1)点的坐标(0,3)(2)

【解析】(1),0),,                                              (1分)

        在Rt△中,∵,              (2分)

   ∴,∴点的坐标(0,3).             (1分)

(2)当点延长线上时,

(0,1),

 ,

∴△∽△.                                               (1分)

.                                                     (1分)

    过点轴,垂足为

 //

∴点的坐标为(4,5).                                           (1分)

设二次函数的解析式为,∴             (1分)

∴二次函数解析式为.                              (1分)

当点在射线上时,同理可求得点,                    (2分)

二次函数解析式为.                                   (1分)

评分说明:过点,当点延长线上或点在射线上时,可用锐

角三角比等方法得(1分),(1分),另外分类有1分其余同上.

(1)先求出A点坐标为(-1,0),B点坐标为(0,1),则OA=1,OB=1,AB=,再根据正弦的定义得sin∠ACB=,而AC=,则OA=,然后根据勾股定理可计算出OC=3,从而确定点C的坐标为(0,3);

(2)分类讨论:当点D在AB延长线上时,如图1,过点D作DE⊥y轴,垂足为E,由于∠CDB=∠ACB,∠BAC=∠CAD,根据相似的判定得△ABC∽△ACD,则AD:AC=AC:AB,即AD:=,可计算出AD=5,易得ADE为等腰直角三角形,则DE=AE=AD=×5=5,OE=4,得到点D的坐标为(4,5),然后设一般式,利用待点系数法求过A(-1,0)、C(0,3)、D(4,5)的二次函数的解析式;当点D在射线BA上,如图2,过点D作DE⊥y轴,垂足为E,与前面的解法相同.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知反比例函数y=
12x
的图象和一次函数y=kx-7的图象都经过点P(m,2).
(1)求这个一次函数的解析式;
(2)如果等腰梯形ABCD的顶点A、B在这个一次函数的图象上,顶点C、D在这个反比例函数的图象上,两底AD、BC与y轴平行,且A和B的横坐标分别为a、b(b>a>0),求代数式ab的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数的图象与反比例函数x<0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0),当x<-1时,一次函数值大于反比例函数值,当x>-1时,一次函数值小于反比例函数值.

(1)求一次函数的解析式;

(2)设函数x>0)的图象与x<0)的图象关于y轴对称,在x>0)的图象上取一点P(P点的横坐标大于2),过P点作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

 


查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数的图象与反比例函数(x<0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0),当x<-1时,一次函数值大于反比例函数值,当x>-1时,一次函数值小于反比例函数值.

(1)求一次函数的解析式;

(2)设函数(x>0)的图象与(x<0)的图象关于y轴对称,在(x>0)的图象上取一点P(P点的横坐标大于2),过P点作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

解答:

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数的图象与反比例函数(x<0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0),当x<-1时,一次函数值大于反比例函数值,当x>-1时,一次函数值小于反比例函数值.

(1)求一次函数的解析式;

(2)设函数(x>0)的图象与(x<0)的图象关于y轴对称,在(x>0)的图象上取一点P(P点的横坐标大于2),过P点作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(江苏扬州卷)数学 题型:解答题

如图,一次函数的图象与反比例函数y1= – ( x<0)的图象相交于A点,与y轴、x轴分别相交于BC两点,且C(2,0).当x<–1时,一次函数值大于反比例函数的值,当x>–1时,一次函数值小于反比例函数值.

(1)    求一次函数的解析式;

(2)    设函数y2= (x>0)的图象与y1= – (x<0)的图象关于y轴对称.在y2= (x>0)的图象上取一点PP点的横坐标大于2),过PPQx轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案