精英家教网 > 初中数学 > 题目详情
勾股定理的逆定理用语言叙述为:
如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形
如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形
分析:把勾股定理的逆定理进行叙述即可.
解答:解:勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
点评:此题主要考查了勾股定理逆定理,关键是熟练掌握课本内容.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如果只给你一把带刻度的直尺,你是否能检验∠MPN是不是直角,简述你的作法.分析:只有一把刻度尺,只能用这把刻度尺量取线段的长度,若∠P是一个直角,∠P所在的三角形必是个直角三角形,这就提示我们把∠P放在一个三角形中,利用勾股定理的逆定理来解决此题.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料?:
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=
3
,PC=1.求∠BPC度数的大小和等边三角形ABC的边长.
李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′PB是等边三角形(可证),而△PP′A又是直角三角形(由勾股定理的逆定理可证).所以∠AP′B=150°,而∠BPC=∠AP′B=150°.进而把AB放在Rt△APB(可证得)中,用勾股定理求出等边△ABC的边长为
7
.问题得到解决.?
[思路分析]首先仔细阅读材料,问题中小明的做法总结起来就是通过旋转固定的角度将已知条件放在同一个(组)图形中进行研究.旋转60度以后BP就成了BP′,PC成了P′A,借助等量关系BP′=PP′,于是△APP′就可以计算了.
解决问题:
请你参考李明同学旋转的思路,探究并解决下列问题:
如图3,在正方形ABCD内有一点P,且PA=
5
,BP=
2
,PC=1.求∠BPC度数的大小和正方形ABCD的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

勾股定理的逆定理用语言叙述为:________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

勾股定理的逆定理用语言叙述为:______.

查看答案和解析>>

同步练习册答案