精英家教网 > 初中数学 > 题目详情

已知双曲线上一点M(1,m)和双曲线上一点N(n,3).
(1)求m、n的值;
(2)求△OMN的面积.

m=2,n=-2;面积为3.5.

解析试题分析:(1)将M(1,m)代入,即可求出m的值;将N(n,3)代入,即可求出n的值;
(2)△OMN的面积=正方形ABCN的面积-△OAN的面积-△OBM的面积-△CMN的面积.
试题解析:

解:(1)∵双曲线过点M(1,m),双曲线过点N(n,3),
∴1•m=2,3n=-6,
∴m=2,n=-2;
(2)如图.∵M(1,2),N(-2,3),
∴△OMN的面积=正方形ABCN的面积-△OAN的面积-△OBM的面积-△CMN的面积

=9-3-1-1.5
=3.5
考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,点A,B分别在轴,轴上,点D在第一象限内,DC⊥轴于点C,AO=CD=2,AB=DA=,反比例函数的图象过CD的中点E。

(1)求证:△AOB≌△DCA;
(2)求的值;
(3)△BFG和△DCA关于某点成中心对称,其中点F在轴上,试判断点G是否在反比例函数的图象上,并说明理由。(

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,O为坐标原点,P是反比例函数(x>0)图象上任意一点,以P为圆心,PO为半径的圆与坐标轴分别交于点A、B.

(1)求证:线段AB为⊙P的直径;
(2)求△AOB的面积;

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,反比例函数的图象与一次函数y=kx+b的图象相交于两点A(m,3)和B(﹣3,n).

(1)求一次函数的表达式;
(2)观察图象,直接写出使反比例函数值大于一次函数值的自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:正比例函数的图象于反比例函数的图象交于点M(a,1),MN⊥x轴于点N(如图),若△OMN的面积等于2,求这两个函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

点P 在反比例函数 的图象上,它关于轴的对称点在一次函数的图象上,求此反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图在平面直角坐标系xOy中,函数(x>0)的图象与一次函数y=kx﹣k的图象的交点为A(m,2).

(1)求一次函数的解析式;
(2)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(2013年浙江义乌12分)如图1,已知(x>)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q,连结AQ,取AQ的中点为C.

(1)如图2,连结BP,求△PAB的面积;
(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为,求此时P点的坐标;
(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:计算题

为响应国家要求中小学生每天锻练1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2

【小题1】求被调查的班级的学生人数
【小题2】求喜欢“乒乓球”的学生人数,并在图1中将“乒乓球”部分的图形补充完整;
【小题3】若该校共有2000名学生,请估计喜欢“足球”的学生人数

查看答案和解析>>

同步练习册答案