分析 (1)先根据等边三角形的性质得∠OBA=∠CBD=60°,OB=BA,BC=BD,则∠OBC=∠ABD,然后可根据“SAS”可判定△OBC≌△ABD;
(2)先根据全等三角形的性质以及等边三角形的性质,求得∠EAC=120°,进而得出以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,最后根据Rt△AOE中,OA=1,∠OEA=30°,求得AC=AE=2,据此得到OC=1+2=3,即可得出点C的位置.
解答 解:(1)△OBC≌△ABD.
证明:∵△AOB,△CBD都是等边三角形,
∴OB=AB,CB=DB,∠ABO=∠DBC,
∴∠OBC=∠ABC,
在△OBC和△ABD中,
$\left\{\begin{array}{l}{OB=AB}\\{∠OBC=∠ABC}\\{CB=DB}\end{array}\right.$,
∴△OBC≌△ABD(SAS);
(2)∵△OBC≌△ABD,
∴∠BOC=∠BAD=60°,
又∵∠OAB=60°,
∴∠AOE=180°-60°-60°=60°,
∴∠EAC=120°,∠OEA=30°,
∴以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,
∵在Rt△AOE中,OA=1,∠OEA=30°,
∴AE=2,
∴AC=AE=2,
∴OC=1+2=3,
∴当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.
点评 本题考查了全等三角形的判定与性质,等边三角形的性质的运用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.解决本题的关键是利用等腰三角形的性质求出点C的坐标.
科目:初中数学 来源: 题型:选择题
A. | x2+1=0 | B. | ax2+bx+c=0 | C. | ($\frac{1}{x}$)2+($\frac{1}{x}$)-3=0 | D. | x2+3x-$\frac{{x}^{2}}{x}$=0 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com