精英家教网 > 初中数学 > 题目详情
13、以三角形的一边长为直径的圆切三角形的另一边,则该三角形为(  )
分析:根据切线的性质和三角形的特点即可得.
解答:解:根据切线的性质和三角形的特点知,这个圆要过三角形的一边的两个顶点,又要与一边相切,则必有一边与圆只有一个交点,那么这边与作为直径的边就垂直,故三角形是直角三角形.
故选B.
点评:本题利用了切线的性质求解:直线与圆相切,则只有一个交点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在直角坐标系中,矩形OBCD的边长OB=4,OD=2,点P是射线OB上一个动点,动点Q在PB或其延长线上运动,OP=PQ,作以PQ为一边的正方形PQRS,点P从O点开始沿射线OB方向运动,运动速度是1个单位/秒,运动时间为t秒,直到点P与点B重合为止.
(1)设正方形PQRS与矩形OBCD重叠部分的面积为y,写出y与t的函数关系式;
(2)y=2时,求t的值;
(3)当t为何值时,三角形CSR为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,在直角坐标系中,矩形OBCD的边长OB=4,OD=2,点P是射线OB上一个动点,动点Q在PB或其延长线上运动,OP=PQ,作以PQ为一边的正方形PQRS,点P从O点开始沿射线OB方向运动,运动速度是1个单位/秒,运动时间为t秒,直到点P与点B重合为止.
(1)设正方形PQRS与矩形OBCD重叠部分的面积为y,写出y与t的函数关系式;
(2)y=2时,求t的值;
(3)当t为何值时,三角形CSR为等腰三角形?

查看答案和解析>>

科目:初中数学 来源:2009年黑龙江省鹤岗市中考数学仿真试卷(三)(解析版) 题型:解答题

如图所示,在直角坐标系中,矩形OBCD的边长OB=4,OD=2,点P是射线OB上一个动点,动点Q在PB或其延长线上运动,OP=PQ,作以PQ为一边的正方形PQRS,点P从O点开始沿射线OB方向运动,运动速度是1个单位/秒,运动时间为t秒,直到点P与点B重合为止.
(1)设正方形PQRS与矩形OBCD重叠部分的面积为y,写出y与t的函数关系式;
(2)y=2时,求t的值;
(3)当t为何值时,三角形CSR为等腰三角形?

查看答案和解析>>

同步练习册答案