精英家教网 > 初中数学 > 题目详情

【题目】抛物线C1:y=a(x+1)(x﹣3a)(a>0)与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,﹣3)
(1)求抛物线C1的解析式及A,B点坐标;
(2)求抛物线C1的顶点坐标;
(3)将抛物线C1向上平移3个单位长度,再向左平移n(n>0)个单位长度,得到抛物线C2 , 若抛物线C2的顶点在△ABC内,求n的取值范围. (在所给坐标系中画出草图C1

【答案】
(1)解:∵抛物线C1:y=a(x+1)(x﹣3a)y轴交于点C(0,﹣3),

∴﹣3=a(0+1)(0﹣3a),

解得a=1(舍去负值).

∴抛物线C1的解析式为:y=(x+1)(x﹣3).

∴A(﹣1,0),B(3,0)


(2)解:∵y=(x+1)(x﹣3)=(x﹣1)2﹣4,

∴该抛物线的解析式为y=(x﹣1)2﹣4,则该抛物线的顶点坐标为(1,﹣4)


(3)解:将(1)中求得的抛物线向上平移3个单位长度,

再向左平移n(n>0)个单位长度得到新抛物线y=(x﹣1+n)2﹣1,

∴平移后抛物线的顶点坐标是(1﹣n,﹣1),

∴﹣ <1﹣n<2,

解得﹣1<n<

∵n>0,

∴0<n<


【解析】(1)根据已知点的坐标代入已知的函数的解析式即可利用待定系数法确定二次函数的解析式;(2)由(1)中的函数解析式即可求出抛物线C1的顶点坐标;(3)首先根据平移确定平移后的函数的解析式,然后确定抛物线C2的顶点坐标;结合图形确定n的取值范围即可.
【考点精析】利用二次函数图象的平移和抛物线与坐标轴的交点对题目进行判断即可得到答案,需要熟知平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=90°,∠A=30°,BC=2,按照如下步骤作图:①分别以点A,B为圆心,大于线段AB长度的一半为半径画弧,两弧分别相交于点M,N;②作直线MN分别交AB,AC于点D,E,连结BE,则BE的长是(
A.
B.3
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正比例函数y=kx与反比例函数y= 的图象不可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请根据图示的对话解答下列问题.

求:(1)a,b的值;

(2)8﹣a+b﹣c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在正方形ABCD中,E为CD边上的一点,F为BC的延长线上一点,CE=CF。

⑴△BCE与△DCF全等吗?说明理由;

⑵若∠BEC=60o,求∠EFD。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图示三角形ABC是等边三角形,DBC边上的一点三角形ABD经过旋转后到达三角形ACE的位置.

(1)旋转中心是哪一点?

(2)旋转了多少度?

(3)如果MAB的中点那么经过上述旋转后M到了什么位置?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBCABBCAD=2BC=6CD=8EF分别是边ABCD的中点, DHBC于点H,连接EHECEF,现有下列结论:①∠CDH=30°EF=4;③四边形EFCH是菱形;SEFC=3SBEH.你认为结论正确的有___________.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上有点a,b,c三点

(1)用“<”将a,b,c连接起来.

(2)b﹣a   1(填“<”“>”,“=”)

(3)化简|c﹣b|﹣|c﹣a+1|+|a﹣1|

(4)用含a,b的式子表示下列的最小值:

①|x﹣a|+|x﹣b|的最小值为   

②|x﹣a|+|x﹣b|+|x+1|的最小值为   

③|x﹣a|+|x﹣b|+|x﹣c|的最小值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,OE,OD分别平分∠AOC和∠BOC,

(1)如果∠AOB=90°,BOC=38°,求∠DOE的度数;

(2)如果∠AOB=α,BOC=β(α、β均为锐角,αβ),其他条件不变,求∠DOE;

(3)从(1)、(2)的结果中,你发现了什么规律,请写出来.

查看答案和解析>>

同步练习册答案