精英家教网 > 初中数学 > 题目详情
如图:△ABC的内切圆O与边BC切于点D,若∠BOC=135°,BD=3,CD=2,则△ABC的面积为=
6
6
分析:首先根据内心的性质得出∠A=90°,再利用勾股定理和切线长定理得出AE的长,进而得出△ABC的面积.
解答:解:∵△ABC的内切圆O与边BC切于点D,∠BOC=135°,
∴∠OBC+∠OCB=45°,∠ABO=∠OBC,∠ACO=∠BCO,AE=AF,BE=BD,CD=FC,
∴∠ABC+∠ACB=90°,
∴∠A=90°,
∴AB2+AC2=BC2
∵BD=3,CD=2,
∴(3+AE)2+(AE+2)2=52
解得:AE=1,
∴AB=4,AC=3,
∴△ABC的面积为:
1
2
×AC×AB=
1
2
×4×3=6.
故答案为:6.
点评:此题主要考查了三角形内心的性质以及勾股定理和三角形面积求法,根据已知得出∠A=90°是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、已知:如图,△ABC内接于⊙O,AE切⊙O于点A,BD∥AE交AC的延长线于点D,求证:AB2=AC•AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC内接于⊙O1,以AC为直径的⊙O2交BC于点D,AE切⊙O1于点A,交⊙O2精英家教网点E,连接AD、CE,若AC=7,AD=3
5
,tanB=
5
2

求:(1)BC的长;
(2)CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知如图,△ABC内切⊙O于D、E、F三点,内切圆⊙O的半径为1,∠C=60°,AB=5,则△ABC的周长为(  )
A、12
B、14
C、10+2
3
D、10+
3

查看答案和解析>>

科目:初中数学 来源:解题升级  解题快速反应一典通  九年级级数学 题型:044

己知:如图,⊙O与内切于点B,BC是⊙O的直径,BC=6,BF为的直径,BF=4,⊙O的弦BA交于点D,连接DF、AC、CD.(1)求证:DF∥AC;(2)当∠ABC等于多少度时,CD与相切?并证明你的结论.(3)在(2)的前提下,连接FA交CD于点E,求AF、EF的长.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

已知如图,⊙O的内接△ABC,AE切⊙O于A点,过C作AE的平行线交AB于D点.   
(1)求证:AC2=AB·AD.  
(2)若∠B=60°,⊙O的直径为6,求S

查看答案和解析>>

同步练习册答案