精英家教网 > 初中数学 > 题目详情
如图,已知双曲线经过点D(6,1),点C是双曲线第三象限分支上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.

(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)判断AB与CD的位置关系,并说明理由.
(1)k=6;(2);(3)根据题意求出点A、B的坐标,然后利用待定系数法求出直线AB的解析式,可知与直线CD的解析式k值相等,所以AB、CD平行.

试题分析:(1)把点D的坐标代入双曲线解析式,进行计算即可得解;
(2)先根据点D的坐标求出BD的长度,再根据三角形的面积公式求出点C到BD的距离,然后求出点C的纵坐标,再代入反比例函数解析式求出点C的坐标,然后利用待定系数法求一次函数解析式解答;
(3)根据题意求出点A、B的坐标,然后利用待定系数法求出直线AB的解析式,可知与直线CD的解析式k值相等,所以AB、CD平行.
解:(1)∵双曲线经过点D(6,1),
,解得k=6;
(2)设点C到BD的距离为h,
∵点D的坐标为(6,1),DB⊥y轴,
∴BD=6,
∴SBCD=×6•h=12,
解得h=4,
∵点C是双曲线第三象限上的动点,点D的纵坐标为1,
∴点C的纵坐标为1-4=-3,
,解得x=-2,
∴点C的坐标为(-2,-3),
设直线CD的解析式为y=kx+b,

所以,直线CD的解析式为
(3)AB∥CD.理由如下:
∵CA⊥x轴,DB⊥y轴,设点C的坐标为(c,),点D的坐标为(6,1),
∴点A、B的坐标分别为A(c,0),B(0,1),
设直线AB的解析式为y=mx+n,

所以,直线AB的解析式为y=-x+1,
设直线CD的解析式为y=ex+f,

∴直线CD的解析式为y=-x+
∵AB、CD的解析式k都等于-
∴AB与CD的位置关系是AB∥CD.
点评:本题是对反比例函数的综合考查,主要利用了待定系数法求函数解析式,三角形的面积的求解,待定系数法是求函数解析式最常用的方法,一定要熟练掌握并灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲、乙两车分别从A,B两地同时出发相向而行.并以各自的速度匀速行驶,甲车途径C地时休息一小时,然后按原速度继续前进到达B地;乙车从B地直接到达A地,如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.
(1)直接写出a,m,n的值;
(2)求出甲车与B地的距离y(千米)与甲车出发时间x(小时)的函数关系式(写出自变量x的取值范围);
(3)当两车相距120千米时,乙车行驶了多长时间?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知函数y=﹣x+5,y=,它们的共同点是:①函数y随x的增大而减少;②都有部分图象在第一象限;③都经过点(1,4),其中错误的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.
(1)求这两种商品的进价.
(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某地为改善生态环境,积极开展植树造林,甲、乙两人从近几年的统计数据中有如下发现:

(1)求y2与x之间的函数关系式?
(2)若上述关系不变,试计算哪一年该地公益林面积可达防护林面积的2倍?这时该地公益林的面积为多少万亩?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的
 
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系式:
       .(填上一个答案即可)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起     分钟该容器内的水恰好放完.

查看答案和解析>>

同步练习册答案